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A B S T R A C T

We present a novel approach to segment coronary cross-sectional images acquired using catheterization imaging
techniques, i.e. intra-vascular ultrasound (IVUS) and optical coherence tomography (OCT). The proposed ap-
proach combines cross-sectional segmentation with longitudinal tracking in order to tackle various forms of
imaging artifacts and to achieve consistent segmentation. A node-weighted directed graph is constructed on two
consecutive cross-sectional frames with embedded shape constraints within individual cross-sections or frames
and between consecutive frames. The intra-frame constraints are derived from a set of training samples and are
embedded in both graph construction and its cost function. The inter-frame constraints are imposed by tracking
the borders of interest across multiple frames. The coronary images are transformed from Cartesian coordinates
to polar coordinates. Graph partition can then be formulated as searching an optimal interface in the node-
weighted directed graph without user initialization. It also allows efficient parametrization of the border using
radial basis function (RBF) and thus reduces the tracking of a large number of border points to a very few RBF
centers. Moreover, we carry out supervised column-wise tissue classification in order to automatically optimize
the feature selection. Instead of empirically assigning weights to different feature detectors, we dynamically and
automatically adapt those weighting depending on the tissue compositions in each individual column of pixels.
The proposed approach is applied to IVUS and OCT images. Both qualitative and quantitative results show
superior performance of the proposed method compared to a number of alternative segmentation techniques.

1. Introduction

Coronary atherosclerosis is an inflammatory disorder that involves
deposition of cholesterol and other fatty substances within the arterial
wall. It can lead to progressive narrowing of coronary arteries, which
can cause angina, or sudden blockage of the coronary arteries leading to
acute myocardial infarction. Intra-vascular Ultrasound (IVUS) and op-
tical coherence tomography (OCT) are catheter-based technologies,
which capture 2D cross-sectional images of the coronary arteries. Both
modalities measure the back-scattered signal from the surrounding
vessel structure after sending sound wave in IVUS or light in OCT.
These provides a much detailed visualization of lumen, stent strut lo-
cation, and plaque morphology. A coronary cross-section is generally
seen as a lumen and a coronary vessel wall, the latter consisting of three
layers: intima, media and adventitia. There are two types of borders of
clinical interest: the lumen-intima border that corresponds to the inner
coronary arterial wall and the media-adventitia border that represents
the outer coronary arterial wall located between the media and ad-
ventitia (see Fig. 1). This work is concerned with segmenting the media-

adventitia boder in IVUS and lumen boder in OCT. The segmentation of
the lumen border in OCT allows, for instance, quantitative analysis of
vessel narrowing and its impact on blood supply to myocardium, and
the localization of the media-advetitia border in IVUS provides both the
exterior geometry of the coronary vessel and the region of interest for
virtual histology.

Various techniques have been developed to segment IVUS images,
e.g. Klingensmith et al. (2000), Cardinal et al. (2006),
Papadogiorgaki et al. (2008), Sonka et al. (1995), Takagi et al. (2000),
Essa et al. (2011), Destrempes et al. (2014), Gao et al. (2015),
Su et al. (2017) and Zakeri et al. (2017). Methods that fit contours to
local image gradients, e.g. Klingensmith et al. (2000), are susceptible to
common artifacts, such as speckle noise and acoustic shadow. More-
over, user initialization is often necessary in order to converge to
meaningful local minima. There are also methods that use global re-
gional information, instead of intensity discontinuities. For instance in
Cardinal et al. (2006), Cardinal et al. assumed that each region consists
of uniform scattering in tissue and has its own statistically distinctive
Rayleigh distribution. However, it is expected that arteries captured in
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IVUS contains various forms of diseased tissue which greatly compro-
mises their assumption. Textural information has also been used.
Papadogiorgaki et al. (2008) proposed to use discrete wavelet frames to
construct decomposition trees to identify vessel wall borders. RBF is
then used to smooth the initial contour obtained by applying a
threshold on those texture features. However, the method suffers from
the presence of stent or severe calcium plaque. Recently in
Su et al. (2017) and Zakeri et al. (2017), pixel-wise classification was
used to obtain initial wall borders. Su et al. (2017) used double neural
networks to segment wall borders, while Zakeri et al. (2017) used
sparse representation based classification and then refined the result
using an active contour model. To deal with heterogeneous texture in
high-frequency IVUS images remains a challenge.

Similar approaches have been applied to OCT imaging, e.g.
Kauffmann et al. (2010), Gurmeric et al. (2009), Unal et al. (2010),
Tung et al. (2011), Ughi et al. (2012), Tsantis et al. (2012) and
Cao et al. (2017), which has become increasingly popular due to its
high resolution. Parametric active contours can cope with small gaps
introduced by stent shadow as long as the landmark points are localized
on the lumen border. For example, the methods proposed in
Kauffmann et al. (2010), Unal et al. (2010) and Gurmeric et al. (2009)
rely on active contour parametric interpolation to cope with the
acoustic shadow caused by stent. However, guide-wire and blood re-
sidue can cause much larger and more irregular acoustic shadow that
interpolation alone may not be sufficient. The work in
Kauffmann et al. (2010) requires occasional user inspection and inter-
vention based on assumptions of the regularity of the lumen border.
Tung et al. (2011) used a convex hull based approach to identify guide-
wire shadow casting on the lumen border after an initial segmentation.
It is assumed that most part of the lumen border in OCT is clearly visible
and continuous. Thus, a large discrepancy between derived convex hull
and initial segmentation indicates optical shadow. However, the lumen
border may not always be convex, particularly at bifurcations. Although
more sophisticated texture analysis techniques may improve the seg-
mentation performance, e.g. Tsantis et al. (2012), these data driven
approaches generally suffer from the imperfection in imaging and
natural variations in anatomical structure and tissue composition.
Others also resorted to user interaction to eliminate the ambiguity in

imaging, e.g. Ughi et al. (2012).
In an attempt to overcome the shortcomings of imaging features,

anatomical and imaging priors have been used to constrain the seg-
mentation. Sonka et al. (1995) requires the user to draw an elliptic
shape to identify the region-of-interest (ROI) and uses parametrized
prior knowledge on arterial wall thickness and double echo pattern in
objective function to carry out segmentation. However, these hard
constraints may not be valid in some cases, e.g. media thickness.
Takagi et al. (2000) extended the work by incorporating spatio-tem-
poral filters to reduce blood speckles in order to enhance contrast. This
however does not address the issue of acoustic shadow or scattering due
to stent or calcification. More recently in Essa et al. (2011), an auxiliary
border is used to tackle the distractions caused by stent and calcifica-
tion and assumed the real media-adventitia border is beneath the
auxiliary border in a simultaneous segmentation. The behavior of the
auxiliary border can be hard to predict, particularly when there is no
such distractions.

Learning and using appropriate priors are hence important. One
approach is to adopt user interaction and directly impose prior
knowledge through initialization and/or user adjustment, e.g.
Sonka et al. (1995), Klingensmith et al. (2000), Cardinal et al. (2006),
Veksler (2008), Jones et al. (2014) and Sun et al. (2013).
Sun et al. (2013) proposed a semi-automatic graph-based method, in
which a pre-segmentation of the lumen is necessary to construct the
graph. A combination of edge and region based costs are assigned to
each node. The method requires the user to interactively correct the
segmentation result on the longitudinal view. Incremental user input
are allowed until satisfactory segmentation is achieved. The maximum
inter-frame difference is set as a global constant in order to impose the
smooth constraint. An alternative is to generalize priors and impose
them as constraints in order to achieve automated segmentation.
Unal et al. (2008) used signed distance transform to implicitly represent
prior shapes and applied principal component analysis (PCA) to gen-
eralize the shape variation. Its automated initialization of the media-
adventitia border, however, is based on the maximum gradient in-
formation which is susceptible to imaging artifacts. In
Wahle et al. (2006), short vertical image segments are collected along
media-adventitia borders to score image segments in unseen images

Fig. 1. Example IVUS and OCT images. First row: original images.
Second row: polar transformed images. Last row: segmented media-
adventitia border in IVUS and lumen border in OCT using the pro-
posed method (red); the groundtruth is shown in green. The bottom of
each segmented image visualizes our tissue classification results. (For
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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