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a b s t r a c t 

Current and near-term implantable prosthetic vision systems offer the potential to restore some visual 

function, but suffer from limited resolution and dynamic range of induced visual percepts. This can make 

navigating complex environments difficult for users. We introduce semantic labeling as a technique to 

improve navigation outcomes for prosthetic vision users. We produce a novel egocentric vision dataset 

to demonstrate how semantic labeling can be applied to this problem. We also improve the speed of 

semantic labeling with sparse computation of unary potentials, enabling its use in real-time wearable 

assistive devices. We use simulated prosthetic vision to demonstrate the results of our technique. Our 

approach allows a prosthetic vision system to selectively highlight specific classes of objects in the user’s 

field of view, improving the user’s situational awareness. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Low or impaired vision is a common cause of disability, with 

prevalence rates estimated between 2.7% and 5.8% [1–3] . This rep- 

resents a global health burden of nearly US$3 trillion [4] . Those 

with low vision report reduced independence and social function, 

resulting in lower overall quality of life [5] . Prosthetic vision sys- 

tems are a type of therapeutic device which aim to enable or im- 

prove key functional abilities in users with low vision, such as face 

recognition, reading and orientation and mobility [6,7] . In general, 

these devices attempt to replace the function of parts of the hu- 

man visual system, which may be affected by disease or injury, by 

providing artificial stimuli to the user based on artificial sensory 

input [8] . 

There have been two large scale multi-centre chronic human 

trials of implantable visual prosthetic devices: The 60 electrode 

Argus II device [9] , and the approximately 1500 electrode alpha- 

IMS device consisting of microphotodiodes implanted on the retina 

[10] . In addition, trials are underway by Pixium Vision SA (Clini- 

calTrials.gov identifier: NCT01864486) and a two year trial has re- 

cently been completed by Bionic Vision Australia [11] . 

The current state-of-the-art in prosthetic vision is limited in 

terms of functional outcomes for users. For example, the best vi- 

sual acuity reported from the Argus II retinal prosthesis system is 
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20/1260 with a 20 degree field of view [9] . This is still well be- 

low the 20/200 threshold at which a person is considered legally 

blind in the United States 1 . The number of discrete levels of stim- 

ulation intensity that a user can perceive is also limited. In reti- 

nal implants, up to ten levels may be discernable [12] . This limits 

users’ ability to perceive contrast, and in systems where image pro- 

cessing is minimal, functional tests are usually performed in high 

contrast environments [13,14] . 

With these limitations, users often cannot interpret complex, 

uncontrolled scenes. However, computer vision and image process- 

ing techniques can be used in some systems to improve functional 

outcomes [11] . In this paper, we use semantic labeling techniques, 

which label each pixel in an image with a semantic category, to 

produce high-contrast stimuli from natural images. Stimuli based 

on semantic content can allow a user to distinguish objects in their 

field of view. This has the potential to improve functional out- 

comes for prosthetic vision users, by enabling navigation in com- 

plex environments. We use simulated prosthetic vision techniques, 

as in [15] , to evaluate the resulting stimuli. An example is shown 

in Fig. 1 . 

We make three significant contributions in this paper: 

• We apply semantic labeling to the problem of navigation using 

prosthetic vision. To our knowledge, this is the first application 

of semantic labeling in prosthetic vision. We show how seman- 

tic pixel labels can be converted to stimulation values so that 

important semantic distinctions can be made by the user. We 

1 42 U.S.C. §416(i)(1)(B) (Supp. IV 1986) 
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Fig. 1. Current prosthetic vision systems have limited ability to reproduce images with detail required for understanding an environment. Given an input image from a 

camera (a), simply downsampling image intensity values produces a visual percept that may be difficult to interpret, as our simulated prosthetic vision system described in 

Section 3 shows (b). Semantic labeling allows a computer system to produce a semantic representation of the scene (c), which can then be converted into a clearer percept 

(d). In this example we highlight potential obstacles, and dark regions show a safe path to walk. 

demonstrate this in a range of navigation scenarios using sim- 

ulated prosthetic vision. 
• We introduce a new dataset for semantic labeling in egocentric 

vision. We provide semantic labels for 34 frames of the First- 

Person Social Interactions Dataset [16] . To our knowledge, no 

existing public egocentric vision datasets include pixel-wise se- 

mantic ground truth, and this represents a new and challenging 

application area for semantic labeling. 
• We present a fast semantic labeling system which allows near 

real-time performance (faster than 1 Hz) for use in embedded 

devices. We improve upon our approach in [17] with a more ac- 

curate edge detector for predicting class boundaries, and a new 

cross-validation method to find selection parameters. We show 

improved and more detailed results on the CamVid [18,19] , 

KITTI [20–22] and Stanford Background [23] semantic labeling 

benchmarks. 

The paper is structured as follows. In Section 2 , we give a re- 

view of previous work in vision processing for prosthetic vision, 

and semantic labeling. In Section 3 , we present our framework for 

the application of semantic labeling in prosthetic vision. We high- 

light the need for improved vision processing techniques, and ex- 

plain our model for incorporating semantic labeling. In Section 4 , 

we present our fast semantic labeling system based on sparsely 

computed unary potentials. This enables the use of semantic label- 

ing in a real-time embedded system, such as a prosthetic vision 

system. 

In Section 5 , we introduce our new dataset of manually labelled 

egocentric video. This allows us to qualitatively evaluate our pro- 

posed system in a realistic application scenario, using only im- 

ages from a head-mounted camera in a dynamic environment. In 

Section 6 , we measure the performance of our fast semantic la- 

beling system on publicly available benchmark datasets. Then, we 

qualitatively demonstrate our proposed system, incorporating ego- 

centric video, semantic labeling, and simulated prosthetic vision 

output. We conclude in Section 7 . 

2. Related work 

2.1. Vision processing for prosthetic vision 

Most current prosthetic vision systems use electrical stimula- 

tion to induce phosphenes , which are a sensation of light pro- 

duced by stimulation other than light [24] . We focus on our 

work as part of an Australian government funded consortium, 

Bionic Vision Australia, which has recently conducted human tri- 

als showing that suprachoroidal implants are a viable technol- 

ogy for producing visual percepts [11] . Since this and similar sys- 

tems use an external computer to process images from a camera 

to produce a stimulation pattern which is then fed to the im- 

plant, it is feasible to incorporate more complex computer vision 

techniques [25] . 

The potential for computer vision systems to improve func- 

tional outcomes in prosthetic vision users is often explored in 

the literature using simulated prosthetic vision. Simulation has 

also been used to predict functional outcomes in future devices 

[26 , 27] . Simulation allows a wide range of computer vision sys- 

tems to be developed and tested without requiring implanted 

devices [6] . 

The use of abstract stimuli, that is, phosphene patterns not di- 

rectly representing a downsampled version of a camera image, has 

been tested in the literature. Some approaches modify the field 

of view to aid the identification of objects. [28] uses zooming 

the field of view which is then communicated to the implant to 

aid in facial recognition, and [29] uses segmentation and zoom- 

ing to aid in reading signs. For navigation, typically a wide field 

of view is used, and image processing compensates for poor acu- 

ity in this case. Visual saliency [30,31] can be used to highlight 

potential obstacles or objects of interest. Depth information, from 

stereo or RGBD cameras, can be used to detect obstacles [32] . [33] 

uses edges in depth images as well as face detection to produce a 

simplified high-contrast representation of the environment. Depth- 

based approaches have been tested using simulation [15,34] . 
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