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a b s t r a c t 

This paper introduces a fast algorithm for randomized computation of a low-rank Dynamic Mode De- 

composition (DMD) of a matrix. Here we consider this matrix to represent the development of a spatial 

grid through time e.g. data from a static video source. DMD was originally introduced in the fluid me- 

chanics community, but is also suitable for motion detection in video streams and its use for background 

subtraction has received little previous investigation. In this study we present a comprehensive evalua- 

tion of background subtraction, using the randomized DMD and compare the results with leading robust 

principal component analysis algorithms. The results are convincing and show the random DMD is an 

efficient and powerful approach for background modeling, allowing processing of high resolution videos 

in real-time. Supplementary materials include implementations of the algorithms in Python . 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The demand for video processing is rapidly increasing, driven 

by greater numbers of sensors with greater resolution, new types 

of sensors, new collection methods and an ever wider range of ap- 

plications. For example, video surveillance, vehicle automation or 

wild-life monitoring, with data gathered in visual/infra-red spec- 

tra or SONAR, from multiple sensors being fixed or vehicle/drone- 

mounted etc. The overall result is an explosion in the quantity of 

high dimensional sensor data. Motion detection is often the fun- 

damental building block for more complex video processing and 

computer vision applications, e.g. object tracking or human behav- 

ior analysis. In practice, there are many different types of sen- 

sors giving data suitable for object extraction, however we fo- 

cus here on video data provided by static optical cameras, not- 

ing the findings generalize to other data types. In this case, the 

change in position of an object relative to its surrounding envi- 

ronment can be detected by intensity changes over time in a se- 

quence of video frames. The challenge therefore is to separate in- 

tensity changes corresponding to moving objects from those gener- 

ated by background noise i.e. dynamic and complex backgrounds. 

From a statistical point of view this can be formulated as a den- 

sity estimation problem, aiming to find a suitable model describing 

the background. Moving objects can then be identified by differ- 
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ences from the reconstructed background from the video frames, 

via some thresholding, as illustrated in Fig. 1 . In practice, the prob- 

lem of finding a suitable model is difficult and often ill-posed 

due to the many challenges arising in real videos, e.g., dynamic 

backgrounds, camouflage effects, camera jitter or noisy images, to 

name only a few. One framework for tackling these challenges is 

provided by subspace learning techniques. Recently, robust princi- 

pal component analysis (RPCA) has been very successful in sepa- 

rating video frames into background and foreground components 

[1] . However, RPCA comes with relatively high computational costs 

and it is of limited utility for real-time analysis of high resolution 

video. Hence, in light of increasing sensor resolutions there is a 

need for algorithms to be more rapid, perhaps by approximating 

existing techniques. 

A competitive alternative is Dynamic Mode Decomposition 

(DMD) — a data-driven method allowing decomposition of a ma- 

trix representing both time and space [2] . Due to the unique prop- 

erties of videos (equally spaced time with high temporal corre- 

lation), DMD is well suited for motion detection, as first demon- 

strated by Grosek and Kutz [3] . 

1.1. Related work 

Bouwmans [4] or Sobral and Vacavant [5] provide recent and 

comprehensive reviews of methods for background modeling and 

related challenges. Among the many different techniques, the class 

of (robust) subspace models are prominent. PCA can be consid- 

ered a traditional technique for describing the probability distri- 

bution of a static background. However, PCA has some essential 
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Fig. 1. Illustration of background subtraction. 

shortcomings and many enhancements have been proposed since 

the method was first proposed for background subtraction by 

Oliver et al. [6] , e.g. adaptive, incremental or independent PCA. A 

review of those traditional subspace models and related issues is 

provided by Bouwman [7] . While DMD is related to PCA and shares 

some of the same limitations, it can overcome others to greatly im- 

prove the performance. Grosek and Kutz [3] have shown that DMD 

can be seen in fact as an approximation to robust PCA (see also 

[8] ). The idea of RPCA is to separate a matrix A into a low-rank L 

and sparse component S 

A = L + S (1) 

This can be formulated as a convex optimization problem that 

minimizes a combination of the l 2 and l 1 norm. Applied to video 

data, the low-rank component describes the relatively static back- 

ground environment, which is allowed to gradually change over 

time, while the second component captures the moving objects. 

This approach has gathered substantive attention for foreground 

detection since the idea was first introduced by Candès [9] — fur- 

ther extended by Zhou [10] for also capturing entry-wise noise. 

Bouwmans and Zahzah [1] recently provided a comparative eval- 

uation of the most prominent RPCA implementations, whose re- 

sults show LSADM [11] and TFOCS [12] algorithms perform best in 

extracting moving objects in terms of the F-measure. Guyon et al. 

[13] show in detail how the former algorithm can be used for mov- 

ing object detection. 

The problem formulation via RPCA leads to iterative algorithms 

with high computational costs. Most of the algorithms require re- 

peated computation of the Singular Value Decomposition (SVD), so 

clearly the algorithms may be accelerated by using faster approxi- 

mate SVD, aiming to find only the k dominant singular values. Liu 

et al. [14] present a Krylov subspace-based algorithm for comput- 

ing the first k singular values with high precision. They showed 

that their LMSVD algorithm can reduce the computational time of 

RPCA substantially. Later they showed even greater computational 

savings with their Gauss–Newton method based SVD algorithm 

[15] . If high precision is not the main concern then approximate 

Monte-Carlo based SVD algorithms can be interesting alternatives 

[16,17] . A different approach is via randomized matrix algorithms, 

which are surprisingly robust and provide significant speed-ups, 

while being simple to implement [18] . Halko et al. [19] and Gu [20] 

provide comprehensive surveys of randomized algorithms for con- 

structing approximate matrix decompositions, while Mahoney [21] 

gives a more general overview. One successful approximate robust 

PCA algorithm using a randomized matrix algorithms is given in 

GoDec [22] . 

1.2. Motivation and contributions 

A core building block of the DMD algorithm, as for RPCA, is 

the SVD. As noted, traditional deterministic SVD algorithms are ex- 

pensive to compute and with increasing data they often pose a 

computational bottleneck. We propose the use of a fast, probabilis- 

tic SVD algorithm, exploiting the rapidly decaying singular values 

of video data. Randomized SVD is a lean and easy to implement 

technique for computing a robust approximate low-rank SVD [19] . 

Compared to deterministic truncated or partial SVD algorithms, we 

gain computational savings in the order of 10 to 30 times. The next 

effect is to increase speed of about 2 to 3 times with random- 

ized DMD, rather than deterministic SVD based DMD. Hence, ran- 

domized DMD may facilitate real-time processing of videos. More- 

over, randomized SVD and DMD are embarrassingly parallel and 

we show that the computational performance can benefit from a 

Graphics Processing Unit (GPU) implementation. To demonstrate 

the applicability for motion detection, we have evaluated and com- 

pared dynamic mode decomposition on a comprehensive set of 

synthetic and real videos with other leading algorithms in the field. 

The rest of this paper is organized as follows. Section 2 presents 

randomized SVD as an approximation to the deterministic algo- 

rithms. Section 3 first introduces DMD and then shows how a low- 

rank DMD approximation using randomized SVD can be used for 

background modeling. Finally a detailed evaluation of DMD is pre- 

sented in Section 4 . Concluding remarks and further research di- 

rections are given in Section 5 . 

2. Singular Value Decomposition (SVD) 

Matrix factorizations are fundamental tools for many practical 

applications in signal processing, statistical computing and ma- 

chine learning. SVD is one such technique, used for data analysis, 

dimensionality reduction or data compression. Given an arbitrary 

real matrix A ∈ R 

m ×n we seek a decomposition, such that 

A = U�V 

∗ (2) 

where U ∈ R 

m ×m and V ∈ R 

n ×n are orthogonal matrices, and � ∈ 

R 

m ×n is a diagonal matrix with the same dimensions as A [23] . 

The columns of U and V are both orthonormal, called right and 

left singular vectors, respectively. The singular values denoted as σ i 

are the diagonal elements of � sorted in decreasing order. While 

we assume a real matrix here, for generality we use the Hermitian 

transpose denoted as ∗. 

In practice we may be interested in a low-rank approximation 

of A with target rank k � m , n . Choosing the optimal target rank k 

is highly dependent on the task, i.e. whether one is interested in a 
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