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a b s t r a c t 

This paper presents a novel method for separating reflection components in a single image based on the 

dichromatic reflection model. Our method is based on a modified version of sparse non-negative matrix fac- 

torization (NMF). It simultaneously performs the estimation of diffuse colors and the separation of reflection 

components through optimization. Our method does not use a spatial prior such as smoothness of colors 

on the object surface, which is in contrast with recent methods attempting to use such priors to improve 

separation accuracy. Experimental results show that as compared with these recent methods that use priors, 

our method is more accurate and robust. For example, it can better deal with difficult cases such as the case 

where a diffuse color is close to the illumination color. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

This paper considers the problem of separating reflection com- 

ponents (i.e., specular and diffuse reflections) in a single image. It is 

useful for several purposes. One is the use with photometric meth- 

ods, such as shape-from-shading [1,2] and photometric stereo [3] . As 

these methods often assume the surfaces of objects to be perfectly 

diffuse, it is necessary to eliminate specular component before apply- 

ing them to real objects having specular reflectance. The separation 

of reflection components is also useful for the visual recognition of 

materials of objects; the highlights extracted from images are used 

as features for the recognition. 

A large number of studies have been conducted to develop a 

method for accurately and robustly separating reflection components 

in a single image [4–13] . Most of them assume the dichromatic reflec- 

tion model, which states that the light reflected on an object surface 

is given by a linear sum of a specular component and a diffuse com- 

ponent [4] . Specifically, the 3-vector i p containing the RGB values of a 

pixel p is given by 

i p = αp i s + βp i d , (1) 

where i s is the color of the only illumination existing in the scene and 

i d is the diffuse color (i.e., the color caused by diffuse reflection) of 

the object surface. 
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If multiple pixels p share the same illumination color i s and the 

same diffuse color i d , then Eq. (1) gives constraints on the variables on 

the right hand side. This is the principle on which color-based meth- 

ods for separating components in a single image rely. More specifi- 

cally, they commonly consider the following setting: 

• The object surface consists of multiple regions with different dif- 

fuse colors, each of which consists of a number of pixels with a 

single color i d . 
• The illumination color i s is known. The diffuse color i d of each 

region and also which region each pixel belongs to are unknown. 

The coefficients αp and βp are different for each pixel p , both of 

which are also unknown. 

Early studies [7,8,14] attempt to solve the problem within this set- 

ting. More recent studies [9–13,15] attempt to utilize spatial informa- 

tion to improve separation accuracy. To do so, they incorporate spatial 

priors such as the smoothness of the diffuse colors and/or the specu- 

lar reflections on the object surface. 

Our method separates reflection components based on sparse 

non-negative matrix factorization. It simultaneously performs the es- 

timation of diffuse colors and the separation of reflection compo- 

nents through optimization. It is notable that our method does not 

use an additional prior or assumption as those used in the recent 

studies. In this respect, our study runs counter to the recent trend 

of research, which is also the argument we make in this paper. That 

is, the above setting with the dichromatic model (1) alone might 

be more sufficient than expected for accurate separation of reflec- 

tion components. In fact, as shown in the experimental results, our 
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method is more accurate and robust than the state-of-the-art that 

uses additional priors. As an additional prior is not necessary, our 

method is free from tuning a number of hyper parameters. 

2. Related work 

The early approach to the problem is to determine diffuse colors 

by analyzing the color space. A number of studies [7,8,14] are fallen in 

this category, and they solve the problem in two steps: (i) they deter- 

mine the diffuse colors first by analyzing the color space onto which 

all the image pixels are projected, and (ii) then determine the other 

unknowns using the results. The method of Klinker et al. [7] performs 

clustering of all the pixels in the RGB color space to determine diffuse 

colors. Bajcsy et al. [8] used the Hue-Saturation-Lightness color space 

instead of the RGB space. The method of Tan and Ikeuchi [14] projects 

pixel colors along the direction of the illumination color to a point 

of the lowest observed intensity to determine the diffuse color. How- 

ever, all these methods tend to be vulnerable to the clutters in the 

color space, such as image noises and color blending along the bor- 

der of diffuse colors. 

To cope with this difficulty, more recent methods attempt to uti- 

lize spatial information in the image [9–13,15] . Instead of determin- 

ing diffuse colors first, most of these methods search for all the pa- 

rameter values simultaneously through optimization. Some of them 

use a specular-free image (or its extension), an image free from spec- 

ular components but with distorted diffuse components. It is created 

from the input image usually by a simple, pixel-wise operation. 

Tan and Ikeuchi [9] first proposed a method of this category. They 

showed a method of creating the specular-free image by setting the 

maximum chromaticity of each pixel to an arbitrary value. Based on 

this, they presented a method that iteratively separates the reflection 

components by using a relation of two neighboring pixels. In their 

method, diffuse colors are estimated gradually in such a way that in- 

formation propagates from outside highlight regions to inside them. 

This propagation often fails on the boundary of diffuse colors. It also 

cannot correctly deal with diffuse colors having the same hue but dif- 

ferent saturation. To solve these problems, Tan et al. [10] proposed a 

method for recovering diffuse components by using the texture infor- 

mation around highlights, but it requires the positions of highlights 

to be known. 

There are a few studies [12,15] extending the method of Tan and 

Ikeuchi, which incorporate an explicit prior that the diffuse colors 

should be mostly smooth on the object surface, except for occa- 

sional region boundaries. Under this assumption, these studies pro- 

pose methods that apply smoothing to the image of an only color 

channel that contains the specular component, smoothing it out and 

then separating the two components. The key issue, then, is how to 

prevent smoothing to be applied across different regions of differ- 

ent diffuse colors. Yang et al. [12] employ bilateral filtering whose 

range filter is determined by approximate diffuse color and apply 

it to the image of maximum chromaticity. Mallick et al. [15] choose 

anisotropic erosion whose structuring set is determined by surface 

texture and apply it to the S channel of the SUV color space. 

There are more studies that follow a similar approach. Shen and 

Cai [11] proposed another specular-free image that is obtained by 

subtracting the minimum of the RGB values from them for each pixel. 

They proposed a simple separation method based on it and also on 

an incorporated prior that the diffuse color changes smoothly around 

highlights. Although it is simple and fast, their method is less accu- 

rate than the above methods, as it simplifies the problem too much, 

resulting in that Eq. (1) will no longer be satisfied. Kim et al. [13] have 

recently proposed an optimization-based approach that uses three 

different priors (i.e., the spatial smoothness of specular reflections 

and diffuse colors, and the number of diffuse colors being as small 

as possible). They also propose to apply the dark channel prior [16] to 

obtaining another specular-free image, although it is exactly the same 

as the one of Shen and Cai [11] . Their method alternately performs the 

following steps in an iterative manner: (i) cluster image pixels based 

on the latest estimate of their chromaticity and (ii) apply an edge- 

preserving filter to the result, followed by reassignment of labels. 

However, it remains unclear how accurate their method is, since their 

experiments compare mostly with the method of Tan and Ikeuchi [9] 

alone and not with that of Yang et al. [12] , which is more close to 

their method in that the smoothness of diffuse colors is assumed and 

an edge-preserving filter is used. Moreover, their method requires a 

number of hyperparameters (and it is unclear how to choose them) 

and also the assumed three priors are too much and could narrow the 

range of applicability. 

3. Non-negative matrix factorization (NMF) 

Our method is based on sparse non-negative matrix factorization 

(sparse NMF). Before describing our method, this section briefly sum- 

marizes sparse NMF and its numerical algorithm. 

3.1. Basic NMF 

NMF is a general-purpose method for multi-variate analysis. For 

data consisting of non-negative values such as images and speech sig- 

nals, it factorizes the data into additive components. To be specific, a 

M × N matrix V containing only non-negative elements is factored 

into a product of a M × R matrix W and a R × N matrix H , both of 

which similarly contain only non-negative elements: 

V � WH , (2) 

or the j th column vector v j of V is represented by a linear combination 

of the column vectors w k ’s of W weighted by the ( k , j ) element H k , j of 

H as 

v j � 

R ∑ 

k =1 

w k H k, j . (3) 

The factorization is obtained by minimizing some cost D ( W , H ) 

measuring the difference between V and its reproduction WH . For 

D ( W , H ), L 2 norm 

D(W , H ) = ‖ V − WH ‖ 

2 
2 (4) 

is widely used for general purposes, so is in our method. The general- 

ized KL divergence [17] and Itakura–Saito divergence [18] are some- 

times used depending on problems. 

Since an efficient iterative algorithm was developed by Lee and 

Seung [17] , NMF has been applied to all sorts of problems, and var- 

ious extensions have been made to the cost function depending on 

problems [18–24] . 

3.2. Sparse NMF 

An important extension is the sparse NMF that incorporates the 

sparse regularization into the minimization [19] . It minimizes the fol- 

lowing cost for the purpose of obtaining H having as small a number 

of non-negative elements as possible. 

F (W , H ) = 

1 

2 

‖ V − WH ‖ 

2 
2 + λ

∑ 

i, j 

H i, j . (5) 

The second term on the right hand side follows the same relaxation 

as sparse coding [25] that L 0 norm is replaced by L 1 norm. The mini- 

mization of this cost results in that each data vector v j is represented 

by a linear combination of as small a number of bases (i.e., the col- 

umn vector of W ) as possible, as in sparse coding. Its difference from 

sparse coding is that the resulting quantities are all non-negative. 

A numerical algorithm for this sparse NMF, i.e., minimizing this 

cost under the constraints that W and H both have only non-negative 
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