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A B S T R A C T

This work studies the application of Fenchel-Duality principles to general convex optimization problems
and their corresponding relaxed versions in the context of optical flow estimation. We derive the associated
primal-dual optimization strategies in the problem of Huber-L1 optical flow with temporal consistency for
non-rigid sequence registration. Temporal consistency is imposed using a recently proposed approach that
characterizes the optical flow using temporal subspace constraints, yielding solutions in a space spanned
by a non-rigid orthogonal trajectory basis. The performance of the resulting optical flow methods has been
studied in a framework for non-rigid sequence registration evaluation. In addition, we have compared the
solution of the different methods in other challenging datasets. We have found that the strategies with
the best outcome are among the ways of applying Fenchel-Duality principles that were not considered in
previous works for the optical flow model with temporal subspace constraints. Indeed, our experiments
have shown the simplest optimization strategy as the best performing one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Opticalflow or image registration in non-rigid sequences of images
is among the most challenging and interesting problems in computer
vision and medical image analysis. In computer vision, the estima-
tion of the optical flow from sequences of non-rigid environments
serves as input to other important applications related to non-rigid
scene understanding (e.g. non-rigid structure from motion [25,71]).
In medical image analysis, non-rigid image registration is crucial
for the study of dynamic structures from medical images [40,67].
The most important challenges for solving the problem are how to
properly deal with large displacements, deformations, and occlusions;
how to include temporal consistency in the algorithms; how to
work with changes of illumination in the scene; and how to
adapt the methods to the particularities of the different medical
image modalities [4,8,15,17,26,30,34,37,41,49,50,56-58,68,76,77,86].
In both disciplines, these challenges are approached by imposing
models of flow that seek for meaningful solutions.

� This paper has been recommended for acceptance by Daniel Rueckert, PhD.
E-mail address: mhg@unizar.es.

This work focuses on non-rigid sequence registration with tem-
poral consistency preservation. Although consistency in the tem-
poral dimension is a very desirable feature for this application,
most optical flow methods yet focus on improving robustness under
noise and varying illumination, or achieving spatial consistency, as
reported in Volz et al. and Garg et al. [26,76]. From them, very few
impose regularization on the temporal dimension. Regularization is
mostly based on the spatio-temporal convolution or the differentia-
tion of the flow [5,7,9,18,42,43,78,87]. In consequence, these meth-
ods are constrained to take advantage of the temporal consistency in
two or at most few neighboring frames.

Some methods impose a regularizer in the temporal component
of the flow [47,64,76,78]. Temporal regularizers have shown accu-
rate results for smooth over time sequences. However, regularizing
in the temporal dimension has adverse effects on the estimated flows
in sequences including not only occlusions and other temporal dis-
continuities but also complex motions and large displacements. In
addition, these proposals still allow considering few frames in the
regularization.

The most effective approaches for including long temporal con-
sistency in non-rigid sequence registration, characterize the time-
varying flows as a linear combination of deformation bases. Some of
these methods use spatio-temporal models for the deformation bases.
The models are either given from spatio-temporal standard bases or
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learned from spatio-temporal training data [15,45,49,86]. However,
the large dimensionality of the problem can extremely limit the accu-
racy of the solutions. Alternative methods use temporal models for
the deformation bases. These methods are inspired by the dual shape-
motion representation of non-rigid structure from motion [1,72].
Under the assumption that the time-varying flows at a given point in
the image domain lie in a low-dimensional space, the model is given
by standard temporal bases or learned from the temporal dimen-
sion of spatio-temporal training data [23,24,26]. With this approach,
the dimensionality of the problem can be considerably reduced. As a
result, the methods are able to consider long sequences in the optical
flow computation.

Since the original contribution of Horn and Schunk for determin-
ing the optical flow [33], variational methods lead the techniques for
solving all variants of the optical flow problem. Variational meth-
ods aim at the minimization of an energy functional. The energy is
defined by the contribution of image and regularization terms. The
image term measures the similarity of the reference and the moving
images after registration. The regularization term allows constrain-
ing the solution to a desired space of flows. In the last decade,
there has been a growing interest in regularizers based on the Total
Variation norm [24,26,59,77,80,81,84]. These regularizers control the
magnitude of the flow gradient while they can preserve discontinu-
ities. This ability has led these methods to occupy top positions in
optical flow benchmark studies [3,10,20] and evaluations [26].

The popularity of the Total Variation regularizer in computer
vision problems has increased thanks to the availability of optimiza-
tion methods for solving this difficult problem [13,14,21,28,52,62,75].
In particular, Chambolle and Pock proposed a fast first-order primal-
dual algorithm for convex optimization and provided the equations
for various computer vision problems including optical flow [13,53].
Their work recovered the principles of convex analysis and Fenchel-
Duality and derived their primal-dual algorithm from the optimiza-
tion of a saddle-point problem [61]. In addition, they showed linear
convergence bounds for sufficiently smooth problems. Since Cham-
bolle and Pock method, different primal-dual strategies have been
proposed in the literature [26,52,80]. However, they have been
partially formulated and evaluated in our application of interest.

The starting point of this article is the framework proposed
by Garg et al. for non-rigid sequence registration with temporal
subspace constraints [26]. In that work, the authors provided an
extended version of improved TV-L1 optical flow algorithm [77] for
weighted Huber-L1 variational formulation. The method reformulated
the pairwise variational problem in order to deal with sequence
registration. In addition, the time-varying flows were characterized
using temporal subspace constraints on the whole sequence. Opti-
mization was approached using quadratic relaxation methods and
applying Fenchel-Duality principles to the resulting subproblems
in two different fashions, yielding two primal-dual strategies for
solving the problem. The authors noticed a third strategy arising
from the parameterization of the optical flow in the temporal sub-
space as a hard constraint. The evaluation of the methods focused in
showing the superiority of using the temporal subspace constraints.
However, there are alternative ways of applying Fenchel-Duality
principles to the variational problem that were not considered in that
work, for example, the strategy associated with Chambolle and Pock
method [13], or the preconditioned optimization method proposed
in Pock and Chambolle [52]. We believe it would be of interest to
derive, evaluate and compare the primal-dual optimization strate-
gies associated with these alternatives.

Thus, the contribution of this article is to explore these differ-
ent ways of applying Fenchel-Duality principles in general convex
optimization problems, and to provide the derivation of the associ-
ated primal-dual optimization strategies in the problem of non-rigid
sequence registration with temporal subspace constraints. We have
derived seven different primal-dual optimization strategies in our

application of interest. These strategies include the three methods in
Garg et al. [26]. In addition, we have extended the non-rigid evalua-
tion framework provided in Garg et al. [26] with images of different
nature. The resulting optical flow methods have been evaluated in
this framework, and compared in other challenging datasets [25,65].

The rest of the article is divided as follows. Section 2 describes
the variational formulation of weighted Huber-L1 optical flow with
temporal subspace constraints. Section 3 reviews the foundations
of Fenchel-Duality principles and their application to primal-dual
optimization. Section 4 shows the derivation of the seven primal-
dual optimization strategies. Section 5 gathers the most important
implementation details. Results are presented in Section 6. Finally,
Section 7 provides the most remarkable conclusions of our work.

2. Huber-L1 optical flow in sequences of images

2.1. Variational formulation

Let Y ⊂ R
2 be the domain of size M × N where the images are

defined 1, I0 : Y → R the reference frame, and If : Y × {1, · · · , F} →
R the temporal sequence of images, respectively. The optical flow
model used in this work aims at finding a sequence of time-varying
vector fields uf : Y × {1, · · · F} → R

2 that estimates the motion exist-
ing between each frame of the sequence and the reference image.
This problem can be formulated from the minimization of the general
variational problem

Etotal(u) = Ereg(u) + a

F∑
f =1

E img
(
If (x + uf ), I0

)
, (1)

where Eimg measures the similarity of the reference I0 and the images
If after warping with the transformation x + uf, Ereg regularizes the
space of solutions, and a balances the contribution of both terms to
the total energy. Since the image similarity term is formulated with
respect to a single image I0, this model is suited to handle sequences
from static viewpoints with minor changes across time.

In this work, we focus on weighted Huber-L1 optical flow [81]
extended to sequences of images

Etotal(u) =
F∑

f =1

∫
Y

g(∇I0)
∥∥∇uf

∥∥
4
dY + a

F∑
f =1

∥∥If (x + uf ) − I0
∥∥

L1 . (2)

Thus, the L1 norm is used for measuring the image similarity, and
Huber regularizer is used to control the smoothness of the flow. The
expression of Huber regularizer is obtained replacing the L1 norm in
the expression of Total Variation (TV) regularizer by the Huber norm

‖x‖4 =

{
|x| − 4/2, if |x| > 4

|x|2/(24), if |x| ≤ 4.
(3)

The parameter 4 > 0 defines the tradeoff between the linear and the
quadratic contributions to the norm yielding solutions in between
TV and L2 regularizers. The function used for weighting the Huber
regularizer is an edge-preserving potential function. This function
contributes to provide solutions with discontinuities located at the
edges of the reference image. In this work, we use g =exp(−c|∇I0|2),

1 In this work, we focus on 2D sequences of images. However, the framework can be
extended to 3D with extra work on the derivations. The 3D case is especially interest-
ing for medical imaging applications. In fact, we used the preconditioned optimization
method 2 in Hernandez [31,32].
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