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A B S T R A C T

This paper addresses the distributed fusion filtering problem for multi-sensor systems with finite-step correlated
noises. The process noise and observation noises of different sensors are finite-step auto- and cross-correlated,
respectively. Based on the optimal local filtering algorithms that we presented before, the filtering error cross-
covariance matrices between any two local filters are derived based on an innovation analysis approach. A
distributed fusion filter is put forward by using matrix-weighted fusion estimation algorithm in the linear un-
biased minimum variance sense. Finally, the proposed algorithms are extended to systems with random para-
meter matrices. Two simulation examples are given to show the effectiveness of the proposed algorithms.

1. Introduction

In the past few decades, in order to meet the needs of higher ac-
curacy, various sensors have been used in many practical systems since
they can provide more information on the target in time and space.
Information fusion estimation for multi-sensor systems has attached
much attention due to the wide applications in engineering systems
such as target tracking, environment monitoring, fault diagnosis, to
name a few [1,2].

Classically, centralized and distributed fusion are generally used to
process the information from multiple sensors [2]. In the centralized
fusion estimation, all raw observation data are sent to a fusion center.
Therefore, the algorithm can provide globally optimal estimate when
there are no faulty sensors. Its disadvantage is that it is not robust and
less flexible when there are faulty sensors. To avoid the shortcoming,
the distributed fusion is proposed. Information from each sensor is
preprocessed to produce a local estimate, and then all local estimates
are sent to a fusion center for producing a fusion estimate by certain
fusion criterion in distributed fusion. The distributed fusion estimator
derived is globally suboptimal in general since there are information
losses. The great virtue of distributed fusion is the robustness and
flexibility brought by its parallel structure which makes fault detection
and isolation of sensors easy [3–6]. Thus, the distributed processing is
preferred by many practical applications [7], and see [8,9] for recent
surveys.

The estimation problems for networked control systems (NCSs) have
been highlighted and widely investigated because of its advantages
such as flexibility, robustness, low cost and so on [10,11]. It is linked by

networks among sensors, estimators, controllers and actuators in NCSs.
Thus, the uncertainties of random delays and packet dropouts are in-
evitable because of the unreliability of transmission channels. Net-
worked systems with random delays and packet dropouts can be
transformed to random parameterized systems with correlated noises.
The uncertainties of random parameters can be described by multi-
plicative noises. The estimation problems for stochastic uncertain sys-
tems have become research focuses in recent years [12–19].

Correlated noises usually exist in the practical applications: e.g., a
discretized system from a continuous-time system, a system in a
common noisy resource, a system with multiple measurement delays,
reduced-order subsystems from a stochastic singular system, and so on.
They are subject to correlated noises which will deteriorate the per-
formance of a system. The state estimation problems of uncertain sys-
tems with correlated noises need discussing in depth. Many valid
methods are available in recent literature. For a class of systems with
correlated noises, a linear optimal recursive filter is proposed in [20]
with applications to networked systems with one-step random delay
and missing measurements. For systems with packet dropouts and fi-
nite-step auto-correlated noises, an optimal filter [21] and a suboptimal
Kalman-type filter [22] have been designed. Optimal linear estimators
are developed for systems with finite-step correlated noises and packet
dropout compensation in [23]. Furthermore, optimal linear estimators
including filter, predictor and smoother [24] and a suboptimal Kalman-
type filter [25] have also been proposed for systems with random
parameter matrices, multiple fading measurements, stochastic non-
linearities, and finite-step auto- and cross-correlated noises. In the lit-
erature aforementioned, the optimal or suboptimal estimators are only
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investigated for single sensor systems with correlated noises, but the
fusion estimation problem for multi-sensor systems with correlated
noises is not taken into account. For multi-sensor uncertain systems
with correlated noises, a distributed weighted Kalman filter is proposed
based on the suboptimal Kalman-type local filter in [26], and cen-
tralized fusion estimators and distributed fusion filter are presented in
[27]. However, those fusion estimators are only designed for systems
with one-step auto-correlated and/or two-step cross-correlated noises.
Thus far, distributed fusion filter for multi-sensor systems with finite
multi-step auto- and cross-correlated noises has not yet been presented
because the derivation of cross-covariance matrices between any two
local filters is difficult and has not solved yet.

In view of the above considerations, the objective of this paper is to
solve the distributed fusion filtering algorithm for multi-sensor systems
with finite-step auto- and cross-correlated noises. Based on the local
filtering algorithm of our previous work [23], the filtering error cross-
covariance matrices between any two local filters are deduced via an
innovation analysis approach for the first time. Based on local filters
and the cross-covariance matrices, a distributed fusion filter is obtained
by using matrix-weighted fusion algorithm in the linear unbiased
minimum variance sense [6]. At last, the proposed algorithms are
generalized to solve the systems with random parameter matrices
which have wide applications in networked systems with random de-
lays and/or packet dropouts [13–19,28–32].

The outlines of this paper are summarized as follows. Section 2 gives
the problem formulation. The optimal local filter is introduced in
Section 3. The filtering error cross-covariance matrices of any two local
filters are deduced in Section 4. In Section 5, the distributed fusion filter
weighted by matrices is given. In Section 6, the proposed algorithms are
generalized to solve a random parameterized system with finite-step
correlated noises. In Section 7, two examples are given to show the
effectiveness of the proposed algorithms. The last part of this paper is
the conclusion. Appendixes give the proofs of main results.

Notation: The notation used here is standard. Rn denotes the n-di-
mensional Euclidean space; Superscript T denotes the transpose; E de-
notes the mathematical expectation; Cov denotes the covariance; δtk is
the Kronecker delta function; Ipi is a pi by pi identity matrix; ⊥ denotes
orthogonality. ̂ ∘x ( •) denotes the estimate of stochastic variable x(○)
based on information before time •, i.e., the projection of x(○) on the
linear space generated by information before time •.

̂∘ = ∘ − ∘x x x( •) ( ) ( •)͠ denotes the estimation error.
∘ ♦ = ∘ ♦P x y( , * , •) E[ ( ) (* •)]͠ ͠x y

T
͠ ͠ is the covariance matrix between es-

timation errors ∘ ♦x ( )͠ and y (* •)͠ , with ∘ ♦ = ∘ ♦P P( , * , •) ( , * , •)x x x͠ ͠ ͠ ,
∘ ∘ ♦ =P ( , , •)x y͠ ͠ ∘ ♦P ( , •)x y͠ ͠ , ∘ = ∘P P( , * •,•) ( , * •)x y x y͠ ͠͠ ͠ and
∘ ∘ = ∘P P( , •,•) ( •)x y x y͠ ͠͠ ͠ , and ∘ = ∘ =x y x yE[ ( •) (* •)] E[ ( ) (* •)]͠ ͠ ͠T T

∘x yE[ ( •) (*)]͠ T with the definitions ∘ = ∘P x y( , * •) E[ ( ) (* •)]͠xy
T

͠ and
∘ = ∘P x y( , * •) E[ ( •) (*)]͠x y

T
͠ . ∘ = ∘Q x y( , *) E[ ( ) (*)]xy

T is the second-order
moment matrix between variables x(○) and y(*), with

∘ = ∘Q Q( , *) ( , *)xx x and ∘ ∘ = ∘Q Q( , ) ( )xy xy .

2. Problem formulation

Consider the following stochastic system with finite-step correlated
noises:

+ = +x t t x t t w t( 1) Φ( ) ( ) Γ( ) ( ) (1)

= + = ⋯y t H t x t v t i L( ) ( ) ( ) ( ), 1, ,i i i (2)

where x(t)∈ Rn is the system state to be estimated. ∈y t R( )i
pi,

= ⋯i L1, 2, , is the observation of the ith sensor. w(t)∈ Rm and
∈v t R( )i

pi are the process and observation noises. Φ(t), Γ(t) and Hi(t)
are known time- varying matrices with suitable dimensions. The sub-
script i denotes the ith sensor and L is the number of sensors.

For the upcoming results, we make the following assumptions.
Assumption 1. w(t) and vi(t) satisfy the following statistical properties

= =w t v tE[ ( )] 0, E[ ( )] 0i (3)
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= − +
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T
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T
, 1 , ,

T
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where N is a known positive integer.

Remark 1. From (4), it is observed that the process noise and
observation noises are N-step auto- and cross-correlated. Without loss
of generality, we assume that they have the common same correlation
steps for simple expression of later derivations. In practice, the process
noise w(t) and the observation noises vi(t) maybe have different
correlated step numbers. More generally, the process noise w(t) is N0-
step auto-correlated and Ni-step cross-correlated with the observation
noise vi(t), the observation noise vi(t) is Ni-step auto-correlated and Nij-
step cross-correlated with vj(t), i≠ j. Then, we can set

= =N N N N N i j Lmax{ , , , , , 1, 2, ..., }i i ij0 in (4) where some correlation
matrices are zeros.

Assumption 2. The initial state x(0) with =x μE[ (0)] 0 and
− − =x μ x μ PE[( (0) )( (0) ) ]0 0

T
0 is uncorrelated with w(t) and vi(t),

= ⋯i L1, 2, , .

Our aim is to find the distributed fusion filter ̂x t t( )o by matrix
weighting sum of local filters ̂x t t( )i from individual sensors based on
the observations − ⋯y t y t y( ( ), ( 1), , (0))i i i , = ⋯i L1, 2, , .

3. Optimal local filter

Recently, optimal linear estimators have been designed for systems
with finite-step correlated noises and packet dropout compensation
based on an innovation analysis approach in [23]. So, optimal local
filter can be obtained based on the results in [23] where =ξ t( ) 1 in
observation equation which means that there are no packet losses
during data transmission. The following Lemmas are straight forward
from [23].
Lemma 1 ([23]). For systems (1) and (2) under Assumptions 1 and 2, local
optimal filter ̂x t t( )i and one-step predictor ̂ +x t t( 1 )i of the ith sensor
subsystem are calculated by

̂ ̂= − +x t t x t t K t t t( ) ( 1) ( )ɛ ( )i i x ii (5)

̂ ̂+ = +x t t t x t t t w t t( 1 ) Φ( ) ( ) Γ( ) ( )i i i (6)

where the gain matrix K t t( )xi of the state filter is given by

= − + − −[ ]K t t P t t H t P t t Q t( ) ( 1) ( ) ( 1) ( )x x i v x
T T

ɛ
1

͠͠ ͠i i i i i (7)

The innovation sequence ɛi(t) and its covariance matrix Q t( )ɛi are
calculated by

̂̂= − − − −t y t H t x t t v t tɛ ( ) ( ) ( ) ( 1) ( 1)i i i i i (8)

= − + − + −

+ −

Q t H t P t t H t P t t H t P t t

P t t H t

( ) ( ) ( 1) ( ) ( 1) ( ) ( 1)

( 1) ( )

i x i v i v x

v x i

ɛ
T T

T

͠ ͠

͠

͠ ͠

͠

i i i i i

i i (9)

The estimation error covariance matrices P t t( )x͠i of the filter and
+P t t( 1 )x͠i of the predictor are given by

= − −P t t P t t K t t Q t K t t( ) ( 1) ( ) ( ) ( )x x x xɛ
T

͠ ͠i i i i i (10)

+ = + +

+

∼ ∼

∼

P t t t P t t t t P t t t t P t t t

t P t t t

( 1 ) Φ( ) ( )Φ ( ) Γ( ) ( )Γ ( ) Φ( ) ( )Γ ( )

Γ( ) ( )Φ ( )
x x w x w

x w

T T T

T T

͠ ͠ ͠

͠

i i i i i

i i (11)

The initial values are ̂ − =x μ(0 1)i 0 and − =P P(0 1)x 0͠ i . The noise
filter w t t( )i and predictor ̂ −v t t( 1)i with covariance matrices ∼P t t( )wi

and −P t t( 1)v͠i are calculated by the following Lemma 2. The cross-
covariance matrices ∼P t t( )x w͠ i i and −P t t( 1)v x͠ ͠i i are calculated by the
following Lemma 3.
Lemma 2 ([23]). For systems (1) and (2) under Assumptions 1 and 2, local
optimal filters w t t( )i and gain matrices −K t t τ( )wi of the process noise w(t)
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