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A B S T R A C T

Since the cost of installing and maintaining sensors is usually high, sensor locations should always be strate-
gically selected to extract most of the information. For inferring certain quantities of interest (QoIs) using sensor
data, it is desirable to explore the dependency between observables and QoIs to identify optimal placement of
sensors. Mutual information is a popular dependency measure, however, its estimation in high dimensions is
challenging as it requires a large number of samples. This also comes at a significant computational cost when
samples are obtained by simulating complex physics-based models. Similarly, identifying the optimal design/
location requires a large number of mutual information evaluations to explore a continuous design space. To
address these challenges, two novel approaches are proposed. First, instead of estimating mutual information in
high-dimensions, we map the limited number of samples onto a lower dimensional space while capturing de-
pendencies between the QoIs and observables. We then estimate a lower bound of the original mutual in-
formation in this low dimensional space, which becomes our new dependence measure between QoIs and ob-
servables. Second, we use Bayesian optimization to search for optimal sensor locations in a continuous design
space while reducing the number of lower bound evaluations. Numerical results on both synthetic and real data
are provided to compare the performance of the lower bound with the estimate of mutual information in high
dimensions, and a puff-based dispersion model is used to evaluate the sensor placement of the Bayesian opti-
mization for a chemical release problem. The results show that the proposed approaches are both effective and
efficient in capturing dependencies and inferring the QoIs.

1. Introduction

Sensor placement plays an important role in a range of engineering
problems, such as grid coverage [8], target tracking [5,27], and mon-
itoring atmospheric releases [20]. These problems may range across
various subjects, however, they all share the same problem of inferring
quantities of interest (QoIs) using measurement data. One such example
is monitoring chemical release accidents where it is desirable to infer
the release parameters such as location, strength and time to aid
emergency responders. The release parameters are QoIs that can be
inferred from sensor measurements. These type of sensor placement
problems are model-driven and they require physics-based models to
describe the spatial and/or temporal processes of the phenomenon of
interest. In this context, QoIs are unknown model parameters and/or
state variables, and the QoI inference problem involves running com-
puter simulations and solving inverse and forward problems.

There are two types of approaches to solve the QoI inference pro-
blem: optimization methods and Bayesian inference. Optimization

methods provide a single point estimate of unknown parameters by
minimizing the discrepancy between model predictions and observa-
tional data. On the other hand, Bayesian inference incorporates prior
information and provides a full posterior distribution over QoIs from
which estimates with quantified uncertainties can be extracted.
Sampling approaches such as Monte Carlo, Markov chain Monte Carlo,
particle filters and ensemble Kalman filters are used to propagate un-
certainties in forward problems and obtain samples from the posterior
distribution calculated using Bayes rule. For a thorough review of both
optimization methods and Bayesian inference, one can refer to [12]. In
this paper, we focus on Bayesian inference.

Data collected from different locations may provide different
amount of information towards QoIs. It is also impractical to place
sensors exhaustively due to the high cost of installation and main-
tenance. Thus, sensors should be placed judiciously so as to maximize
the information content. Sensor locations are commonly decided by
running simulations and maximizing certain criterion. There are var-
ious choices such as mean square error (MSE), mutual information,
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entropy, and invariants of information matrix such as A-, D-, and E-
optimal design. Among all, mutual information is the most commonly
used, since it is a natural measure of dependence between two random
variables and the other criteria can be derived from it.

Ertin et al. [9] discussed maximum mutual information between
sensor data and target state to decide which sensor should be queried
for tracking the target. It was shown that maximum mutual information
was equivalent to minimizing expected posterior uncertainty of the
target state. This holds in the special case when the conditional dis-
tribution of the observable given the state is independent of the state as
in the fixed additive Gaussian noise case. Krause et al. [18] discussed
sensor placements for prediction problems where mutual information
between the observed locations and unobserved locations is maximized
in applications of monitoring temperature and precipitations. Wu et al.
[29] tackled a similar problem in soil moisture. Instead of applying
maximum mutual information strategy globally, locations were first
clustered according to soil moisture content, and then maximum mu-
tual information was used in each cluster to select sensor locations.

Although mutual information is a desirable criterion from a theo-
retical perspective, from a practical point of view it is challenging to
estimate it directly from Monte Carlo samples. Some commonly used
estimators include histogram based estimator, kernel density estimator,
and k-nearest neighbor estimator (kNN). In their survey, Walters-
Williams and Li [26] show that parametric estimation usually outper-
forms non-parametric estimation when data is drawn from a known
family of distributions. But this is not the case in most practical pro-
blems. Khan et al. [15] compares different estimators and shows that
the kNN estimator of mutual information developed by Kraskov et al.
[17] captures better the nonlinear dependence than other commonly
used estimators. The kNN estimator of mutual information, proposed by
Kraskov et al. [17], is based on kNN estimator of entropy [16]. It is
shown that by using matching distances in the joint and marginal
spaces, the biases in entropy estimators could be canceled to provide an
overall better accuracy.

The statistical errors of kNN estimators are approximately propor-
tional to the dimensionality and inverse proportional to the square root
of the number of samples [17]. This makes the estimation of mutual
information challenging in high dimensions with limited number of
samples as is the case with complex physics-based models. Nonetheless,
in many applications, mutual information is adopted as a metric only
for comparison purposes. In sensor placement applications, mutual in-
formation at different locations is compared to determine the sensor
that can provide the most information for inferring the QoIs, thus,
there’s no need to know the exact value of mutual information as long
as the correct comparison outcome is provided. As a result we can use
alternatives that have consistent performance in such comparisons.

The contribution of the paper is two fold. First, we propose a lower
bound of mutual information that is used as an alternative for com-
parison purposes. This is achieved by mapping the limited number of
samples onto a lower dimensional space while capturing dependencies
between the QoIs and observables. We then estimate a lower bound of
the original mutual information in this low dimensional space, which
becomes our new dependence measure between QoIs and observables.
Second, Bayesian optimization [13] is introduced to facilitate max-
imizing the criterion over a continuous design space while reducing the
number of lower bound evaluations. This strategy is inspired by the
application of Bayesian optimization in experimental design by Weaver
et al. [28], where the posterior variance of the failure-time quantile is
maximized in an accelerated life test problem. Numerical results on
both synthetic and real data are provided to compare the performance
of the lower bound with the estimate of mutual information in high
dimensions, and a puff-based dispersion model is used to evaluate the

sensor placement of the Bayesian optimization for a chemical release
problem. The results show that the proposed approaches are both ef-
fective and efficient in capturing dependencies and inferring the QoIs.

The rest of the paper is organized as follows. In Section 2, un-
certainty modeling and Bayesian inference is introduced. The proposed
sensor placement strategy is detailed in Section 3. Two numerical ex-
periments are presented in Section 4 to show the consistency of the
lower bound on both synthetic and real data and to demonstrate the
efficiency of the proposed sensor placement based on the new lower
bound and Bayesian optimization on a simulated chemical release ac-
cident. Finally, conclusions are given in Section 5.

2. Bayesian inference

In this section, we introduce Bayesian inference for solving inverse
problems. In the Bayesian framework, uncertainties in state variables
and parameters are described using probability distributions.
Measurement data is used to update the knowledge of these quantities.
It is desirable for the posterior distribution to have a small uncertainty
and at the same time to capture the true value. The connection between
these quantities and observation data is embedded in the mathematical
model which describes the phenomenon of interest. Since the proposed
approach in this paper is universal, an abstract model will be in-
troduced first.

2.1. Uncertainty modeling

To set notation, consider the following abstract model:

� � � =θ( , , ) 0 (1)

� � �=y θ( , , ) (2)

� � �=q θ( , , ) . (3)

Here,R is some operator, u is the solution or the state variable and θ is
a set of parameters, which usually have a physical interpretation. x
denotes the scenario which defines the problem being considered. In
sensor placement, x usually refers to sensor locations.Y is a map from
the solution to the prediction quantity y that can be compared with
sensor measurements D. In addition, Q defines QoI which is denoted by
q. In our problem, q can be θ or u or other quantities inferred from θ and
u. However, no matter what q is, model parameters and state variables
need to be known first. Then other quantities can be obtained through
Eq. (3). Usually, θ and u are unknown or partially unknown, and need
to be inferred from data. Let τ denotes unknown parts of θ and u. In this
paper, Bayesian inference is carried out to solve the problem.

Because the observation data is noisy due to sensor imprecision, the
measurement noise ϵ follows a known pdf p(ϵ) that is defined by the
specifications of the sensors. This results in the following relation be-
tween the observable d and model prediction y.

= +d y ϵ. (4)

Finally, the relation between the observable d and model para-
meters θ as well as state variable u is given by combining Eqs. (2) and
(4). This measurement model, Eq. (5) defines the likelihood function
and Bayes rule can be used to update the knowledge of τ.

� � �= +d θ( , , ) ϵ . (5)

Since Bayes rule is used as the inference engine, then a prior
probability distribution needs to be defined for τ, that is, τ∼ p(τ). Note
that the additive errors introduced in the previous equations are not a
requirement; multiplicative errors or embedded errors are possible as
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