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A B S T R A C T

This paper addresses problems of large planning time and cost uncertainty for informative path planning of a
mobile sensor where the location of sensor deployment is different of that of an operational area. The first
problem is that the cost has no term dependent on sensor state before arriving at the operational area and it
causes large planning time. The information of the state of interest dissipates over time during the planning time
and it degrades performance of sensing operation. The other problem is that the cost is dependent on the
parameters to be estimated. To assess the cost, the target state in the future should be predicted by integrating
the system model based on noisy initial estimate. The limitation of the informative path planning has a greater
impact on performance in this specific problem. A strategy to cope with these problems is to devise a real-time
path planning algorithm by using online optimization. The proposed algorithm is divided into two phases;
determining the path to the boundary of the operational area and guiding the sensor by an informative potential
field in the area. Detailed analysis on performance of the proposed algorithm compared to an optimal solution by
nonlinear programming is given. The simulation results have demonstrated that the proposed algorithm can
cope with performance degradation observed in the optimal solution.

1. Introduction

The use of a large number of sensors has become common in data
fusion applications to obtain synergistic observation effects. As the
amount of data to be processed has increased, emerging interest in
research into automatic management of a set of sensors is motivated.
Multisensor management is formally described as a system or a process
that attempts to manage a set of sensors in a dynamic, uncertain en-
vironment to improve performance of data fusion [1]. Generally, mul-
tisensor management algorithm is about how to make real-time deci-
sions for selection of a sensor set [2–4] and configuration of sensor
deployment [5–7]. The criteria for such decisions are defined on the
basis of the accuracy of parameter estimation. Information theory
provides a tool of achieving this aim. Information measures such as
Fisher information matrix (FIM) and entropic information have been
employed to quantify performance of the sensor system. Difference and
relationship between various information measures can be found in
[8,9].

A mobile sensor denotes a mobile robot system which is equipped
with a sensor to gather information of the environment [10–13]. It is
also referred to as a mobile smart object [14] which includes aerial or
terrestrial drones exploring an operational area [15,16] since it is a
mobile robot system that is more complex than a sensor. The mobile

sensor is expected to perform a mission in an operational area, to re-
duce uncertainty in some quantity of interest at some point in time. A
key problem for the mobile sensor network is to make plans for max-
imizing the information by controlling the mobile sensors after the
decision of sensor selection and deployment. It is often formulated as an
optimal control problem which can be solved by nonlinear program-
ming (NLP) [17–19]. To avoid explosion in computing complexity in
NLP, some studies have addressed this problem by using receding
horizon method [20–22] and gradient-based control [8,10,23,24] as
real-time solutions. For online motion planning including dynamic and
environmental constraints, moreover, framework of the Rapidly-ex-
ploring Random Tree (RRT) algorithm [25] has been extended to the
multidimensional RRT* [26] and the Information-rich Rapidly-ex-
ploring Random Tree (IRRT) algorithm [27–29]. Note that in the pre-
vious works the sensors are assumed to be deployed already at an op-
erational area, where the sensors can obtain measurements, before
starting planned behaviors.

The purpose of this study is to devise a path planner where the
mobile sensor can perform sensing task after arriving at an operational
area. The problem is that the initial sensor location is different from the
operational area. For applications in dynamic environment, such as
search and rescue [14,15,30] and target tracking [8,12,13,31], real-
time decision to dispatch a mobile sensor to a region of interest or

https://doi.org/10.1016/j.inffus.2018.01.010
Received 16 May 2017; Received in revised form 8 December 2017; Accepted 11 January 2018

⁎ Corresponding author at: Eureka Hall, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
E-mail addresses: yjkim@ascl.kaist.ac.kr (Y. Kim), wyjung@ascl.kaist.ac.kr (W. Jung), hcbang@ascl.kaist.ac.kr (H. Bang).

Information Fusion 45 (2019) 27–37

Available online 16 January 2018
1566-2535/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2018.01.010
https://doi.org/10.1016/j.inffus.2018.01.010
mailto:yjkim@ascl.kaist.ac.kr
mailto:wyjung@ascl.kaist.ac.kr
mailto:hcbang@ascl.kaist.ac.kr
https://doi.org/10.1016/j.inffus.2018.01.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2018.01.010&domain=pdf


reallocate a sensor in operation to another region can be made. In that
sense, we suppose that the mission of a mobile sensor starts with the
decision to dispatch, not with the deployment onto the operational
area. In making plans for the sensor dispatch, since there is no mea-
surement available right after the dispatch, the cost formulation has no
term dependent on sensor state at that time. It is hard to apply the
receding horizon and RRT-based methods to this problem setup since
the state-dependent cost resides at a future time. Even if the optimal
solution by NLP is found, the optimal trajectory starting after large
planning time may be no longer optimal in the perspective of in-
formation. It is because the information of the environment is being
dissipated during the planning time. Consuming much time in path
planning after the real-time decision to dispatch is not preferable in
practice.

Another problem addressed in this paper is the dependence of the
cost function on the parameters to be estimated, as pointed out in
[21,32,33]. The path planning algorithms should refer to the predicted
target state, not the true state, to assess the future information measure.
The target state in the future is obtained by integrating the system
model based on noisy initial estimate. The obvious limitation to the
informative path planning will have a greater impact on performance of
the path planner to the specific problem formulated in this study.

The strategy of this study to deal with these problems is to design a
real-time path planning algorithm using online optimization. The pro-
posed algorithm is divided into two phases. Determining the path to the
boundary of the operational area through a properly chosen waypoint
belongs to the first phase, given a gradient-based control law during the
operation in the area as the second phase. The gradient descent method
for empirical risk minimization [34] is adopted for online optimization
executed on the way to the waypoint to determine the best approach
position to the operational area. Feasibility of the proposed algorithm
was verified by numerical simulations for an exemplary multisensor-
multitarget tracking mission. Detailed analysis on performance of the
proposed algorithm compared to that of the optimal solution by NLP
will be given. Simulation results have demonstrated that the proposed
algorithm can cope with performance degradation observed in the op-
timal solution caused by large planning time and cost uncertainty.

The rest of the paper is organized as follows. It starts with addres-
sing problem formulation in Section 2. After introducing the formula-
tions for the state of interest and the information measure, the problems
to be solved will be discussed. Section 3 describes the proposed path
planning strategy in detail. Section 4 introduces a multisensor-multi-
target estimation models and sensor dispatch scenarios. The method
and results of the numerical simulations will be given in Section 5.
Finally, Section 6 presents summary and conclusions.

2. Problem formulation

Fig. 1 describes a workflow of a multisensor management algorithm.
This paper focuses on the instance after a decision to dispatch a new
sensor is made. The decision is made by a sensor manager, which can be
of a ground control station or a high-performance onboard mission
computer. The sensor manager is supposed to make plans for a mobile
sensor to gather measurements from targets of interest. The purpose of
the path planning for dispatch of a mobile sensor is to obtain maximum
information of the target state where the mobile sensor can operate
sensing task in a circular region, ∈ 2C  , called an operational area. The
sensor is supposed to get into the operational area at ts. After ap-
proaching the operational area, the sensor is allowed to gather in-
formation until tf. Fig. 2 shows configuration of the operational area
and the initial location of the sensor. A solution to the path planning
problem can be obtained by solving an optimal control problem, ad-
dressed in Section 2.3. Before discussing the optimal control problem,
an estimation model for the state of interest will be given in Section 2.1.
The cost to be optimized is defined based on the FIM which will be
described in Section 2.2.

2.1. State of interest

In this paper, the target system is described as a stochastic vector
state space model. Uncertain parameters of interest in the target system
are represented by a state vector XT. The system model for the target
state can be expressed as a nonlinear differential equation as

= +X t f X t ω t˙ ( ) ( ( )) ( )T T (1)

where ω(t) denotes the zero-mean Gaussian process noise whose cov-
ariance is Q(t). One may employ a perturbation method [35] to line-
arize the system as

= +δX t F t δX t δω t˙ ( ) ( ) ( ) ( )T T (2)

where = ∂
∂F t( ) f

XT
is called a state transition matrix. δXT(t) and δω(t)

denote infinitesimal changes of XT(t) and ω(t), respectively. The linear
system is used to approximate the short-term behavior of a nonlinear
system in a simpler form. The long-term behavior can be tracked by
some nonlinear estimation scheme.

The observation model which relates measurements to the target
state is defined as

= +Z t h X t ν t( ) ( ( )) ( )T (3)

where the measurement noise denoted as ν(t) is a zero-mean Gaussian
process with covariance R(t). The linearized observation model is

Fig. 1. Workflow of a multisensor management algorithm.

Fig. 2. Operational area and sensor dispatch location.
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