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A B S T R A C T

Shape From Focus refers to the inverse problem of recovering the depth in every point of a scene from a set of
differently focused 2D images. Recently, some authors stated it in the variational framework and solved it by
minimizing a non-convex functional. However, the global optimality on the solution is not guaranteed and
evaluations are often application-specific. To overcome these limits, we propose to globally and efficiently
minimize a convex functional by decomposing it into a sequence of binary problems using graph cuts. To il-
lustrate the genericity of such a decomposition-based approach, data-driven strategies are considered, allowing
us to optimize (in terms of reconstruction error) the choice of the depth values for a given number of possible
depths. We provide qualitative and quantitative evaluation on Middlebury datasets and we show that, according
to classic statistics on error values, the proposed approach exhibits high performance and robustness against
corrupted data.

1. Introduction

1.1. Context

Retrieving the depth of a scene from a collection of at least one
image is a challenging inverse problem that is typically solved using
shape-from-X approaches (where X denotes the cue to infer the shape,
e.g. stereo, motion, shading, focus, defocus, etc) or a mixture of them.
This topic gave rise to a huge amount of papers and still represents a
great interest for researchers in the computer vision community.
Indeed, it has numerous applications, especially in robotics, both for
localization and environment analysis, in monitoring or video-surveil-
lance either for security or for medical technical assistance, or in mi-
croscopy and chemistry [1].

More specifically, let us remind that stereovision relies on the dis-
parities between matched pixels of an image pair [2], shape-from-
shading exploits the variations of brightness of a single image [3,4] and
shape-from-motion deduces depth from matched points of interest [5].
Shape-from-focus (SFF) [6] and shape-from-defocus (SFD) [7] represent
alternatives approaches that share the idea of using the focus to esti-
mate the 3D structure of a scene from differently focused images ac-
quired by a monocular camera. Thus, an object appears focused only in
a limited range (depth of field) and is progressively blurred as the
camera moves away from this range. For both approaches, active and
passive sensors exist, depending on whether or not a structured light

composed of patterns is projected onto the scene to alleviate ambi-
guities. In this paper, we will focus on the passive device. In addition to
the depth map, both approaches generally also provide an estimation of
the all-in-focus image of the scene, i.e. the image obtained by selecting
for each pixel, the intensity at which it appears the most focused, or
sharp.

Now, SFF and SFD differ on one main point. SFD estimates the depth
by measuring the relative blurriness between a reference image and the
remaining ones. The blurring process needs to be explicitly modeled, a
very few images are usually required and the approach can be applied
to dynamic scenes. Similarly, [8,9] have chosen to solve the inverse
problem by precisely modeling the defocusing process with the help of
an all-in-focus image. This requires the knowledge of the parameters of
the camera to compute the spatially varying point spread function
(PSF). In these works, the authors iteratively minimize, using Split
Bregman algorithm, a regularized energy computed from the distance
between the observations and the approximated PSFs applied to the all-
in-focus images.

SFF only assumes that there is an explicit relationship between the
depth of a given pixel and the focal value at which it appears the most
focused (or sharp). This implies the choice of an appropriate predefined
operator for measuring the amount of sharpness, and a fairly large
number of images to expect a good reconstruction quality of the scene.
Therefore, SFF is mainly used to analyze static scenes.

In contrast to multi-cameras systems, SFF and SFD approaches allow
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for a more compact size of the electronic system, decrease its cost and
avoid to deal with matching ambiguities. The topic is still of interest as
demonstrated by recent works, e.g. [8,10,9,11], including machine
learning with convolutional neural networks [11].

1.2. Related work

As previously explained, solving the SFF problem implies the choice
of an appropriate sharpness operator for selecting the focus maximizing
the pixel sharpness. First among many, Nayar [6] introduces a sharp-
ness operator named Summed Modified LAPlacian (SMLAP) based on
second derivatives. Then, we refer the reader to the study [12] that
compares a wide variety of sharpness operators in a comprehensive
way.

The idea of early approaches (such as [6]) is to compute a sharpness
profile over the focus values and take the argument of the maximum of
this profile for every pixel. However, whatever the used sharpness op-
erator, an estimation using raw profile is prone to errors in presence of
degraded or noisy data so that different filters adapted to the sharpness
profile have been proposed. In [6], a Gaussian interpolation is per-
formed around the maximum detected on the raw profile. As an alter-
native to Gaussian interpolation, [13] proposed to interpolate the
sharpness profile by a low-order polynomial. This idea has been then
followed in [10], in which an eight-order polynomial is used.

Whatever the sharpness operator and the interpolation method
used, blind techniques (i.e. that consider pixels independently of their
neighbors) do not generally allow for accurate recovering the 3D geo-
metry of a whole scene. Indeed, the sharpness operator relies on object
borders that produce sharp edges on which reliable and precise depth
values may be deduced. In the absence of such elements or of texture,
the maximum of sharpness location tends to produce unreliable results.
Ambiguities are especially present in textureless, underexposed or
overexposed regions. To cope with these problems, some authors [14]
proposed to reject the sharpness values being under a threshold, re-
sulting in a globally more reliable, but sparse depth map.

Since the measurements from sharpness operator do not necessarily
determine the depth uniquely, the SFF is an ill-posed problem. While
formulating this kind of problem in the variational framework is a
standard way to tackle it, surprisingly, only very few papers [15,17,10]
did it. Mathematically, this amounts to the definition of a functional
that embeds a data fidelity term and a smoothness (or regularization)
term and that has to be (efficiently) minimized.

In [10], the variational formulation uses the negative interpolated
contrast measure from Modified LAPlacian (MLAP, i.e. SMLAP re-
stricted to a single pixel) as data fidelity term. As a result, this term is a
non-convex but smooth continuous function. The regularization term
used is the discrete isotropic Total Variation (TV), discontinuity-pre-
serving, non-smooth but convex. To minimize the resulting non-convex
functional, the data term is linearized and an iterative algorithm,
namely Alternating Direction Method of Multipliers (ADMM) is applied.
According to the authors, this algorithm provably converges toward a
critical point of the functional but no optimality guarantees are men-
tioned about the solution. Although the proposed algorithm seems to
give good results and exhibit good convergence properties, it has been
actually evaluated only qualitatively and on few real images.

The work of [15] also uses the sharpness operator MLAP. The data
fidelity term is the truncated quadratic difference between the max-
imum value of sharpness and the tested sharpness. This term is there-
fore non-convex. The smoothness term is a truncated L2 norm (then also
non-convex) that is discontinuity-preserving. The truncation depends
on whether a significant texture is present or not. The algorithm used
for the minimization of the resulting non-convex functional is the
α-expansion based on graph cuts [16]. Interesting results are obtained
but the approach is prone to get easily trapped in local minima of the
energy and in [15], the evaluation is limited to application-specific
images (optical microscopes).

1.3. Outline of the proposed approach

In this work, we explore a new way to solve the SFF problem by
directly minimizing, for a given depth resolution, a convex functional.
The advantage of such a choice is twofold: (i) The optimality about the
solution is easier to guarantee and (ii) the convexity property can be
exploited to use fast minimization procedures. Functional properties of
the aforementioned approaches against ours are summarized in the
Table 1.

Our choice focuses on graph cuts because of their well-founded
theoretical background [18] and the existence of a fast maximum-flow/
minimum-cut algorithm [19]. While [20] has optimality guarantees for
convex priors, the graph construction requires a lot of computational
resources (in terms of time and memory). Alternatives, like the α-ex-
pansion [16], allow for minimizing the functional iteratively by solving
sequentially binary problems until convergence, but without any
guaranty relatively to the number of iterations required.

Thanks to a discretization step, the functional can nevertheless be
exactly minimized when the data fidelity term is convex, by mapping
the original problem to a deterministic number of independent binary
problems (each one solved using graph cuts) [21]. Each subproblem
boils down to choosing a split value along the depth dimension and
labeling the depth map accordingly. Given a number of binary pro-
blems, the dyadic strategy is an usual efficient way to select these split
values, but a data-driven splitting strategy allows for lowering the re-
construction error, especially when the fixed number of discrete depth
values is low. Another beneficial effect is to balance the sizes of the
subproblems, thus reducing the complexity of the divide-and-conquer
approach.

Fig. 1 gives the outline of our approach. Our optimization algorithm
is based on graph cuts (bottom right rectangular box on Fig. 1). Besides
data images and regularization parameter λ, it takes as an input the tree
of split values, i.e. the values that define hierarchically the subproblems.

Table 1
Functional properties between the proposed approach, [15,10].

Our [15] [10]

Data term Convex Non-convex Non-convex
Regularization term Convex Non-convex Convex
Functional Convex Non-convex Non-convex
Optimization method Graph cut Graph cut ADMM
Optimality Globally

optimal
Within a known factor
of the global minimum
[16]

No guaranty of
optimality

Fig. 1. Flowchart representing the approach chosen to solve our problem. In
this paper, different implementations are explored for starred boxes.
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