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The availability of high-speed 3D video sensors has greatly facilitated 3D shape acquisition of dynamic and
deformable objects, but high frame rate 3D reconstruction is always degraded by spatial noise and temporal
fluctuations. This paper presents a simple yet powerful dynamic 3D reconstruction improvement algorithm
based on intensity video guided multi-frame 4D fusion. Temporal tracking of intensity image points (of moving
and deforming objects) allows registration of the corresponding 3D model points, whose 3D noise and fluc-

tuations are then reduced by spatio-temporal multi-frame 4D fusion. We conducted simulated noise tests and real
experiments on four 3D objects using a 1000 fps 3D video sensor. The results demonstrate that the proposed
algorithm is effective at reducing 3D noise and is robust against intensity noise. It outperforms existing algo-
rithms with good scalability on both stationary and dynamic objects.

1. Introduction

Three dimensional shape acquisition of highly dynamic and de-
formable objects is an increasingly active research topic in computer
vision, with the development of high-speed 3D video sensors [1,2]. It is
a fundamental and critical prerequisite of numerous applications, such
as dynamic face recognition [3], action and behavior perception [4,5],
object deformation analysis, etc. However, the 3D sequences from high-
speed 3D video sensors usually suffer from serious spatial noise and
temporal fluctuations, which degrades the performance of 3D re-
construction. The inaccuracy of the high frame rate 3D sequence is
caused by multiple factors, including calibration error, non-uniform
illumination, surface properties, motion of scenes or objects, sensor
variations, etc. In passive 3D reconstruction systems (e.g. stereo vision
sensors), uneven illumination or texture reflectance can cause stereo
matching errors and thus poor reconstruction performance, as shown in
Fig. 1. Additionally, resulting from the sensor technology, there are a
small number of out-of-sync pixels that produce spatial noise and
temporal fluctuations in the 3D sequence, as shown in Fig. 2. Therefore,
denoising high frame rate 3D/depth sequences and thus improving the
performance of 3D dynamic and deformable shape acquisition is of
significant value.

In this paper, we present a method to improve the dynamic 3D
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reconstruction from high-speed 3D stereo video sensors, where the 3D
sequence improvement framework is based on 2D intensity tracking
that guides a 4D spatio-temporal fusion. The core idea is that the 2D
intensity data of consecutive images can be aligned by a temporal
“stereo” matching algorithm, and then the corresponding 3D point data
can be fused in the spatio-temporal domain to reduce the 3D spatial
noise and temporal fluctuations.

The contributions of the paper are: (1) a simple yet powerful noise
reduction pipeline for boosting the 3D reconstruction of dynamic and
deformable objects. (Section 4); (2) a generic 2D intensity tracking
guided multi-frame 4D fusion model that integrates spatial intra-frame
filtering and temporal inter-frame fusion. (Section 3). In Section 5, we
demonstrate the proposed method by denoising 3D sequences of sta-
tionary, dynamic and deformable objects from a 1000 fps 3D stereo
video sensor.

2. Related works

For 3D/depth noise reduction, 3D/depth noise characterization and
models [6-10] provide an important basis for boosting the performance
of 3D reconstruction. Noise in a 3D/depth image can be generally
characterized into three types including spatial, temporal and inter-
ference noise. Each type of noise corresponds to specific theoretical or
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Fig. 1. Texture-related 3D noise on a static plane: (a) a 3D frame; (b) the region
of interest of the 3D frame; (c) region of interest of the 3D frame with intensity
texture; (d) the whole 3D frame with texture. The 3D noise in the 3D frame is
closely related to the textures in the intensity image.

Fig. 2. Noise example: (a) an intensity frame of a falling sphere captured by a
high-speed stereo video sensor; (b) invalid pixels in the intensity frames; (c)
structural noise in a reconstructed 3D frame of the falling sphere.

empirical noise models. Most of 3D/depth image improvement methods
mainly focus on reducing spatial axial and lateral noise, smoothing
temporal fluctuations and filling non-measured pixels [11].

Existing algorithms are performed either using a single image (such
as adaptive Gaussian filter (Ad-GF) [9], adaptive bilateral filter (Ad-BF)
[12]) or multiple registered images (such as KinectFusion [13], imaging
burst [14]). Recently, Guo et al. [15] also proposed to fuse multi-scale
depth images using a hierarchical signed distance field for improved 3D
reconstruction. The multi-view 3D registration based methods are
helpful in smoothing 3D data and thus improving the 3D reconstruction
quality, while the performance of the methods on dynamic or deform-
able objects is still limited.

To address this, there are existing algorithms using motion/tem-
poral information for point-based fusion or filtering. For example,
DynamicFusion [16] estimates dense non-rigid warp fields that fuse live
frames of a dynamic scene to get a gradually denoised and complete 3D
reconstruction. The dense SLAM system performs better on dynamic
scenes compared with the KinectFusion algorithm. There are also some
temporal filtering based algorithms, such as the velocity-based adaptive
threshold filter (Ad-TF) [17], the spatial-temporal divisive normalized
bilateral filter (DNBF) [18], and the constrained temporal averaging
filter (TA) [19]). However, some are only based on the depth in-
formation of individual frames. On the other hand, depth-intensity
based 3D/depth noise reduction methods including the adaptive joint
bilateral filter (Ad-JBF) [20], the guided filter [21], the non-causal
spatio-temporal median filter (ST-MF) [22], and the multi-sensor
system [23] have been used for boosting the quality of 3D reconstruc-
tion. However, due to the limited reconstruction quality of high-speed
3D video sensors, denoising high frame rate sequences is still an open
issue.

3. Proposed pipeline

The proposed system framework (Fig. 3) has 2 main stages: (1) 2D
intensity tracking guided 3D motion field estimation; (2) spatio-tem-
poral multi-frame 4D fusion. The input to the pipeline is a 3D sequence
St = {p! € #°} with pixel-wise registered intensity I' = {a/ € #} and
depth images D' = {d{ € #}, where i is the pixel. In the first stage,
dense tracking is performed on the intensity sequence I' using a belief
propagation based patch matching algorithm [24]. Thus, we obtain
dense optical flow of I‘, which is also the continuous intensity motion
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field. Based on the projective camera model, the 3D motion fields of the
pixel-wise registered 3D sequence P' can be estimated by leveraging the
intensity motion fields.

In the second stage, using the continuous 3D motion fields, piece-
wise spatio-temporal multi-frame 4D fusion is performed on the 3D
sequence by fusing the registered 3D points. Rejected outliers in the 3D
motion fields result in holes in the fused 3D sequence, so we perform
gradient-directed hole filling to repair them. Finally, we can obtain a
higher quality 3D sequence with smoother 3D spatial surface and less
temporal fluctuations. More details on each stage are given in Section 4.

4. Intensity tracking guided 4D fusion

This section details the intensity tracking guided 3D motion field
estimation and the spatio-temporal multi-frame 4D fusion model for 3D
sequence improvement.

4.1. Intensity-guided 3D motion field estimation

For a dynamic 3D object, we assume that each intensity image point
in n consecutive frames is trackable in the temporal domain. To achieve
this, dense tracking is performed on the pixel-wise registered intensity
sequence I' using a particle belief propagation method [24]. This gives
an intensity motion field {s***! € #?} between each pair of consecutive
2D intensity frames I, I'*1.

The intensity correspondence field s“'+! = {si**!} is obtained by
minimizing an objective function that combines a unary term evalu-
ating point similarity and a pairwise term for piecewise smoothness as:

Shi+l = argmin z (z/)l(slg,zﬂ) + Z zpz(slg,tﬂ, Siitﬂ))
s1,‘,t+1 i
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In Eq. (1), N; (i) are the neighbors of the iy, 2D intensity pixel a/ in frame
I, (s#'*1) is the unary term that represents the discrepancy of a pair of
corresponding 2D intensity patches centered on the iy pixel in con-
secutive frames I, I'+1, as

Py (s = Y win I + Ky + sPD-T (K + Ky
neN (i)
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where k; is the 2D coordinates of the iy, pixel in frame I';{k,} is the 2D
coordinates of the intra-frame neighbors of the pixel k;w,, is a weight
assigned to each neighbor k,, emphasizing closer points to the center.

P, (shFL, 85 = wy, lIsP T 1—sh* Y| is a smoothness term to reg-
ularize the correspondence field, which can be optimized by mini-
mizing the message (smoothness error) passed by the intra-frame
neighboring intensity patch n to the patch i. w,, is a weight assigned to
each neighboring motion vector s/;'*1.

The resulting pixel-wise continuous intensity motion fields s“+!
give pixel-wise correspondences for the registered depth frames D'. We
iterate the correspondences across time t so each point has a linked
position p} in the depth frame D (3D frame S°).

Using the projective camera model (assuming that the intensity
pixels are distortion-free), the point p! in the 3D frame S’ can be ex-
pressed as
plf =d/ [fx_l (xf—uo), fy_1 (.Vit—Vo), 1] 3)
where f, f,, uo, v are the calibration parameters (focal length and
centers) of the camera, d/is the depth value, and x/, )/ are intensity
image pixel coordinates.

For an intensity field, the registration from frame I’ to frame I” is
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where s§” = x—x/ and s§” = yT—y/. The 3D correspondence vector
m’T for the point i from the corresponding frame S’ to frame S can be
estimated by:
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