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A B S T R A C T

First-person videos (FPVs) or egocentric videos provide a huge amount of data for visual lifelogs. The quality
assessment of frames in FPVs serves as an important tool, feature or evaluation baseline for not only structuring
but also analyzing lifelogs. To develop a frame-quality measure for FPVs, we introduce a new strategy for image
quality estimation, called mutual reference (MR), which uses one or more pseudo-reference images to evaluate a
test image. We then propose a MR quality estimator, called Local Visual Information (LVI), that primarily
measures the relative blur between two images. To apply the MR strategy to FPVs, we propose a mutual re-
ference frame quality assessment for FPVs (MRFQAFPV) framework which incorporates LVI. Our results, using
both real and synthetic distortions and objective and subjective tests, demonstrate both methods perform better
than existing NR QEs at measuring the quality of frames in FPVs.

1. Introduction

Wearable cameras (Pivothead, Looxcie Camera, Mobius, Gopro,
Google Glass) mounted on human bodies can record videos at any time
and place without length limitation. These so-called first-person videos
(FPVs) or egocentric videos can record continuous data about personal
daily life. People are increasingly using FPVs to document activities,
share experiences, record trips, and more [4]. The huge amount of in-
formation from long-time and unstructured FPVs is a rich source for
visual lifelogs [5]. Recent research on assessing lifelogs in FPVs in-
volves two aspects: structuring and analysis. Methods to structure vi-
sual lifelogs consists of informative-image detection [6], temporal
segmentation [7,8], egocentric summarization [9,10] and content-
based search and retrival [11,12]. Analysis of lifelogs involves object
discovery [13], activity recognition [14] and spatial localization [15].

The visual quality of individual frames influences the ability to both
structure and analyze FPVs. First, image quality is one important in-
dicator when searching for informative images, which are defined in
[6] as “intentional” images and can be used to summarize FPVs.
Second, image quality provides an evaluation tool for applications re-
lated to viewing experience, including fast-forward and stabilization
[16,17]. Third, it can be used to filter out useless frames before ap-
plying methods for content search [12] and activity recognition [14]. In
addition, it can provide information about the wearer’s motion as well
as environmental cues regarding fog, over-exposure or under-exposure.

FPVs have significantly different attributes than typical broadcast

and mobile videos. Broadcast videos are often captured by stably-
mounted cameras with high-quality frames, and mobile videos are
captured from hand-held mobile devices. In both cases, a filmmaker
captures scenes guided by real-time feedback from a screen, so the
camera can be intentionally controlled to be reasonably stable and have
the desired field of view. However, wearable cameras rarely are stably
mounted nor have real-time feedback. Video is often gathered pas-
sively, without attending to composition. Even if there is an intention to
record a high-quality video, the camera may not capture a well-com-
posed high-quality video. This occurs not only because the wearer may
be unaware of the field of view, but also because external factors may
temporarily influence body actions as well. As a result, FPVs as re-
corded from camera rarely tell an effective story that is attractive from
an aesthetic perspective, which are two attributes of professional videos
[18]. An experienced filmmaker can learn to capture professional-
quality video using a mobile camera. However, the passive nature of
FPVs, as well as their lack of organization and shot boundaries, limits
their ability to tell an effective story. Even with a high spatial resolution
and high quality, FPVs would rarely be considered professional.

Camera motions due to head or body movement of the camera
wearer can significantly degrade the quality of individual frames in an
FPV [1,2]. The motion-induced distortions of images in FPVs can be
mainly classified as blur and the geometric distortions of rolling shutter
artifacts and rotation. Blur could be caused by any camera movement,
and arises when motion is sufficiently large during the exposure period
[19]. Rolling shutter artifacts mainly arise from camera panning and
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tilt, and produce skew or wobble in an image. Skew appears when the
camera moves at a constant speed; wobble occurs when the frequency
of motion is greater than the frame rate of the recording video [20].
Finally, image rotation is a combination of translational camera motion
and roll. For example, when camera is mounted on the hat of the wearer
and the head tilts to left or right, the camera rotates around an axis with
some distance to the camera center.

To evaluate the quality of individual frames, it is typical to apply
Image Quality Estimators (IQEs). Existing IQEs are normally classified
into three types: full-reference (FR), reduced-reference (RR) and no-
reference (NR) methods. FR and RR methods [21–24] need a high-
quality corresponding reference image that is the source of the distorted
image to be evaluated. These types of IQEs are not applicable for as-
sessing frames in a FPV, because no reference image exists. Moreover,
since the image might already be degraded, the results of FR and RR
methods will not meaningfully reflect any additionally introduced de-
gradations.

In contrast, NR methods estimate the quality of a single image
without relying on any reference [25]. However, most existing NR
methods are content dependent [26–29]. As a result, it is often difficult
to interpret the output of a NR method [30]. For example, setting a
quality threshold in a system is challenging; all five NR QEs considered
in [30] are unable to consistently partition high-quality images from
heavily degraded images. In addition, these IQEs are rarely evaluated
on the types of degradations present in individual frames of an FPV [2].

In this paper, we propose a new strategy of quality estimation,
called mutual reference (MR), which does not fit into the previous ca-
tegorization of FR, RR or NR methods. A MR QE estimates the quality of
a test image based on one or more pseudo-reference image. Unlike FR
and RR QEs, perfect pixel alignment is not necessary; instead the
pseudo-reference image and the test image are constrained only to have
sufficient overlapping content. For example, the pseudo-reference could
be a high-quality image captured by a stably-mounted camera from one
viewpoint, and test images can capture the same scene from different
points of view using a moving camera. Another example is a group of
temporally-adjacent video frames, where one or more frames can be a
pseudo-reference for the remaining frames.

The MR strategy is a natural choice to assess the quality of frames in
a FPV. First, MR provides a relative quality estimation that allows de-
gradations to be present in any images. A relative score can be used to
select the image with the best quality from a set of images. Second, MR
uses information from the overlapping regions between two or more
images. This minimizes content dependency in quality scores, so that
scores are more easily interpretable in a system.

We apply the mutual reference approach to design a MR QE, called
Local Visual Information (LVI) [1], to measure the relative blur. The
principle of LVI is to locally measure the effective visual information in
the human visual system (HVS), and to evaluate the quality difference
based on the information ratio. Based on LVI, we design a framework of
mutual reference frame quality assessment for FPVs (MRFQAFPV),
which measures the LVI score of each frame in a FPV [3].

Section 2 describes prior works in FR QEs and NR QEs. Section 3
presents a detailed description of the strategy for MR. Our proposed MR
QE, LVI, is described with its basic principle and reliability check in 4.
Our MRFQAFPV is described in Section 5. The framework has three
steps: temporal partitioning, reference search and quality estimation. In
Section 6, we demonstrate our framework is effective at assessing
quality of individual frames in FPVs, and outperforms existing NR QEs
in this context. Our results include demonstrating temporal partitioning
methods, as well as two subjective tests that include synthetic distor-
tions and real frames captured from FPVs. Section 7 summarizes this
paper and discusses future work.

2. Prior work on QEs

2.1. Full-reference QEs

FR QEs use a pixel-aligned reference image to estimate the quality of
distorted versions of the same image. They can be categorized by
whether they apply models of the human visual system, image struc-
ture, or image statistics [31]. Two common QEs are the Structural Si-
milarity Index (SSIM) [21], which is based on structure, and Visual
Information Fidelity (VIF) [32], which is based on statistics.

SSIM computes means and variances of each image, applies a si-
milarity measure to each,
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and combines these with a correlation term to quantify distortions in
the luminance and contrast. In Eq. (1), x is the reference image and y is
the test image, and fx and fy are extracted features from x and y, re-
spectively. The same quality score will be unchanged if we swap the
order and instead consider the distorted image to be the reference x.
This type of symmetry does not allow SSIM to be used to determine
which image has better quality. In addition to SSIM, Feature Similarity
(FSIM) [22], Gradient Magnitude Similarity (GSM) [33] and Spectral
Residual based Similarity (SR-SIM) [34] employ the same similarity
measure in Eq. (1) using other features. Therefore, these QEs also are
incapable of determining whether a test image is better than its re-
ference image. While, some other QEs, for example, VSNR [35] and
MAD [36], use a non-symmetric structure to compute quality scores,
reversing the order of the reference image and the test image still does
not lead to a meaningful comparison.

VIF [32] is an information-based QE. It assumes that the two images
are from the exact same source field, which it models using the statistics
of the reference image. Since VIF does not depend on the similarity of
features or error images, it is able to distinguish which image is better
among the two images despite having no prior information. Another QE
that can compare the quality of two images is Visual Distortion Gauge
(VDG) [37]. However, neither VIF nor VDG have been designed to
measure two images with geometric changes.

2.2. No-reference QEs

No-reference (NR) QEs use only the information of the input image
to be evaluated. One specific subset of NR QEs are NR blur metrics,
which were summarized in [38,25]. One uses the histogram of DCT
coefficients [39]. Edge-based blur QEs have also been proposed and
comprise the majority of blur QEs: [40,41], JNBM [38], CPBD [42].
Non-edge blur metrics using the discrimination between re-blurred
versions of an image [43,44] and local phase coherence [45] were also
proposed. However, blur estimation developed from these strategies
depends heavily on the image content. If we have two images that share
only a portion of their content, then because blur metrics may show
very different behaviors in their non-common areas, the overall blur
scores of the two images cannot accurately reflect their visual differ-
ence. NR QEs may also be based on statistics. Specifically, BRISQUE
[27], NIQE [28], and IL-NIQE [29] all use natural scene statistics (NSS)
to compute quality. These QEs are still content-dependent, and do not
often have bounded range of their quality scores. Moreover, they are
less effective when applied to images that differ in spatial resolution
from the images that were used to train them [30].

In [30], the question is considered of whether a QE can distinguish
between badly degraded images and relatively undistorted images.
Their results indicate that it is challenging for NR QEs. In particular,
there exists a large overlap between the historgrams of the quality
scores for undistorted and badly degraded images using BRISQUE,
NIQE and IL-NIQE. In addition, our results in Section 6 demonstrate
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