
Contents lists available at ScienceDirect

Journal of Visual Communication and
Image Representation

journal homepage: www.elsevier.com/locate/jvci

On data-driven Saak transform☆

C.-C. Jay Kuo⁎, Yueru Chen
Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-2564, USA

A R T I C L E I N F O

Keywords:
Data-driven transform
RECOS transform
Saak transform
The Karhunen-Loéve transform (KLT)
Linear subspace approximation
Principal component analysis

A B S T R A C T

Being motivated by the multilayer RECOS (REctified-COrrelations on a Sphere) transform, we develop a data-
driven Saak (Subspace approximation with augmented kernels) transform in this work. The Saak transform
consists of three steps: (1) building the optimal linear subspace approximation with orthonormal bases using the
second-order statistics of input vectors, (2) augmenting each transform kernel with its negative, (3) applying the
rectified linear unit (ReLU) to the transform output. The Karhunen-Loéve transform (KLT) is used in the first
step. The integration of Steps 2 and 3 is powerful since they resolve the sign confusion problem, remove the
rectification loss and allow a straightforward implementation of the inverse Saak transform at the same time.
Multiple Saak transforms are cascaded to transform images of a larger size. All Saak transform kernels are
derived from the second-order statistics of input random vectors in a one-pass feedforward manner. Neither data
labels nor backpropagation is used in kernel determination. Multi-stage Saak transforms offer a family of joint
spatial-spectral representations between two extremes; namely, the full spatial-domain representation and the
full spectral-domain representation. We select Saak coefficients of higher discriminant power to form a feature
vector for pattern recognition, and use the MNIST dataset classification problem as an illustrative example.

1. Introduction

Signal transforms provide a way to convert signals from one re-
presentation to another. For example, the Fourier transform maps a
time-domain function into a set of Fourier coefficients. The latter re-
presentation indicates the projection of the time-domain function onto
a set of orthonormal sinusoidal basis functions. The orthonormal basis
facilitates the inverse transform. The original function can be synthe-
sized by summing up all Fourier basis functions weighted by their
Fourier coefficients. The basis functions (or transform kernels) are ty-
pically selected by humans. One exception is the Karhunen-Loéve
transform (KLT) [1]. The KLT kernels are the unit eigenvectors of the
covariance matrix of sampled data. It is the optimal transform in terms
of energy compaction. That is, to obtain an approximation to an input
signal class, we can truncate part of KLT basis functions associated with
the smallest eigenvalues. The truncated KLT provides the optimal ap-
proximation to the input with the smallest mean-squared-error (MSE).

We develop new data-driven forward and inverse transforms in this
work. For a set of images of size ×N N , the total number of variables in
these images is N 2 and their covariance matrix is of dimension N4. It is
not practical to conduct the KLT on the full image for a large N. Instead,
we may decompose images into smaller blocks and conduct the KLT on
each block. To give an example, the Discrete Cosine Transform (DCT)

[2] provides a good approximation to the KLT for image data, and the
block DCT is widely used in the image/video compression standards.
One question of interest is whether it is possible to generalize the KLT
so that it can be applied to images of a larger size in a hierarchical
fashion? Our second research motivation comes from the resurgent
interest on convolutional neural networks (CNNs) [3,4]. The superior
performance of CNNs has been demonstrated in many applications such
as image classification, detection and processing. To offer an explana-
tion, Kuo [5,6] modeled the convolutional operation at each CNN layer
with the RECOS (REctified-COrrelations on a Sphere) transform, and
interpreted the whole CNN as a multi-layer RECOS transform.

By following this line of thought, it would be a meaningful task to
define the inverse RECOS transform and analyze its properties. The
analysis of the forward/inverse RECOS transform will be conducted in
Section 2. Being similar to the forward and inverse Fourier transforms,
the forward and inverse RECOS transforms offer tools for signal analysis
and synthesis, respectively. However, unlike the data-independent
Fourier transform, the RECOS transform is derived from labeled
training data, and its transform kernels (or filter weights) are optimized
by backpropagation. The analysis of forward/inverse RECOS transforms
is challenging due to nonlinearity. We will show that the RECOS
transform has two loss terms: the approximation loss and the rectifi-
cation loss. The approximation loss is caused by the use of a limited

https://doi.org/10.1016/j.jvcir.2017.11.023
Received 12 October 2017; Accepted 30 November 2017

☆ This paper has been recommended for acceptance by Zicheng Liu.
⁎ Corresponding author.
E-mail address: cckuo@sipi.usc.edu (C.-C. Jay Kuo).

Journal of Visual Communication and Image Representation 50 (2018) 237–246

Available online 05 December 2017
1047-3203/ © 2017 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10473203
https://www.elsevier.com/locate/jvci
https://doi.org/10.1016/j.jvcir.2017.11.023
https://doi.org/10.1016/j.jvcir.2017.11.023
mailto:cckuo@sipi.usc.edu
https://doi.org/10.1016/j.jvcir.2017.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2017.11.023&domain=pdf

number of transform kernels. This error can be reduced by increasing
the number of filters at the cost of higher computational complexity and
higher storage memory. The rectification loss is due to nonlinear acti-
vation. Furthermore, since the filters in the RECOS transform are not
orthogonal to each other, the inverse RECOS transform demands the
solution of a linear system of equations.

It is stimulating to develop a new data-driven transform that has
neither approximation loss nor the rectification loss as the RECOS
transform. Besides, it has a set of orthonormal transform kernels so that
its inverse transform can be performed in a straightforward manner. To
achieve these objectives, we propose the Saak (Subspace approximation
with augmented kernels) transform. As indicated by its name, the Saak
transform has two main ingredients: (1) subspace approximation and
(2) kernel augmentation. To seek the optimal subspace approximation
to a set of random vectors, we analyze their second-order statistics and
select orthonormal eigenvectors of the covariance matrix as transform
kernels. This is the well-known KLT. When the dimension of the input
space is very large (say, in the order of thousands or millions), it is
difficult to conduct one-stage KLT. Then, we may decompose a high-
dimensional vector into multiple lower-dimensional sub-vectors. This
process can be repeated recursively to form a hierarchical representa-
tion. For example, we can decompose one image into four non-over-
lapping quadrants recursively to build a quad-tree whose leaf node is a
small patch of size ×2 2. Then, a KLT can be defined at each level of the
quad-tree.

If two or more transforms are cascaded directly, there is a “sign
confusion” problem [5,6]. To resolve it, we insert the Rectified Linear
Unit (ReLU) activation function in between. The ReLU inevitably brings
up the rectification loss, and a novel idea called kernel augmentation is
proposed to eliminate this loss. That is, we augment each transform
kernel with its negative vector, and use both original and augmented
kernels in the Saak transform. When an input vector is projected onto
the positive/negative kernel pair, one will go through the ReLU op-
eration while the other will be blocked. This scheme greatly simplifies
the signal representation problem in face of ReLU nonlinear activation.
It also facilitates the inverse Saak transform. The integration of kernel
augmentation and ReLU is equivalent to the sign-to-position (S/P)
format conversion of the Saak transform outputs, which are called the
Saak coefficients. By converting the KLT to the Saak transform stage by
stage, we can cascade multiple Saak transforms to transform images of a
large size. The multi-stage Saak transforms offer a family of joint spa-
tial-spectral representations between two extremes – the full spatial-
domain representation and the full spectral-domain representation. The
Saak and multi-stage Saak transforms will be elaborated in Sections 3
and 4, respectively.

Although both CNNs and multi-stage Saak transforms adopt the
ReLU, it is important to emphasize one fundamental difference in their
filter weights (or transform kernels) determination. CNN’s filter weights
are determined by the training data and their associated labels. After
initialization, these weights are updated via backpropagation. A CNN
determines its optimal filter weights by optimizing a cost function via
backpropagation iteratively. The iteration number is typically huge.
The multi-stage Saak transforms adopt another fully automatic method
in determining their transform kernels. They are selected based on the
second-order statistics of input vectors at each stage. It is a one-pass
feedforward process from the leaf to the root. Neither data labels nor
backpropagation is needed for transform kernel determination.

The Saak coefficients in intermediate stages indicate the spectral
component values in the corresponding covered spatial regions. The
Saak coefficients in the last stage represent spectral component values
of the entire input vector (i.e., the whole image). We use the MNIST
dataset as an example to illustrate the distribution of Saak coefficients
of each object class. Based on the ANalysis Of VAriance (ANOVA), we
select Saak coefficients of higher discriminant power by computing
their F-test score. The larger the F-test score, the higher the dis-
criminant power. Finally, we compare the classification accuracy with

the support vector machine (SVM) and the K-Nearest-Neighbors (KNN)
classifiers.

The rest of this paper is organized as follows. The forward and in-
verse RECOS transforms are studied in Section 2. The forward and in-
verse Saak transforms are proposed in Section 3. The multi-stage Saak
transforms are presented in Section 4. The application of multi-stage
Saak transforms to image classification for the MNIST dataset is de-
scribed in Section 5. The CNN approach and the Saak-transform-based
machine learning methodology are compared in Section 6. Finally,
concluding remarks are given and future research directions are pointed
out in Section 7.

2. RECOS transform

The RECOS transform is a data-driven transform proposed in [5,6]
to model the convolutional operations in a CNN. In the context of image
processing, the forward RECOS transform defines a mapping from a
real-valued function defined on a three-dimensional (3D) cuboid to a
one-dimensional (1D) rectified spectral vector. The forward and inverse
RECOS transforms will be studied in this section.

2.1. Forward RECOS transform

As illustrated in Fig. 1, a spatial-spectral cuboid, denoted by
C i j L L L(, , , ,)p p i j k , consists of 3D grid points with indices i j k(, ,)

• along the horizontal dimension: ∈ + … + −i i i i L{ , 1, , 1}p p p i ,

• along the vertical dimension: ∈ + … + −j j j j L{ , 1, , 1}p p p j ,

• along the spectral dimension: ∈ … −k L{0,1,2, 1}k ,

where =i j i j(,) (,)p p is its spatial pivot and L L,i j and Lk are its width,
height and depth, respectively. For a real-valued function defined on
cuboid C i j L L L(, , , ,)p p i j k , one can flatten these values into a one-dimen-
sional (1D) vector,

∈ = × ×R N L L Lf , where ,N
i j k (1)

by scanning the 3D grid points with a fixed order. All vectors in RN are
generated by the same flattening rule.

Consider an anchor vector set [5,6] that contains Lk vectors of unit
length,

= … … = = −A K La a a a a{ , , , , , }, ‖ ‖ 1 and 1,k K k k0 1 (2)

where ak is defined on C i j L L L(, , , ,)p p i j k and flattened to a vector in RN .
We divide anchor vectors into two types. The vector

Fig. 1. Illustration of a cuboid with its pivot at =i j i j(,) (,)p p .

C.-C. Jay Kuo, Y. Chen Journal of Visual Communication and Image Representation 50 (2018) 237–246

238

Download English Version:

https://daneshyari.com/en/article/6938379

Download Persian Version:

https://daneshyari.com/article/6938379

Daneshyari.com

https://daneshyari.com/en/article/6938379
https://daneshyari.com/article/6938379
https://daneshyari.com

