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a b s t r a c t

Hashing is one of the popular solutions for approximate nearest neighbor search because of its low stor-
age cost and fast retrieval speed, and many machine learning algorithms are adapted to learn effective
hash function. As hash codes of the same cluster are similar to each other while the hash codes in differ-
ent clusters are dissimilar, we propose an unsupervised discriminative hashing learning method (UDH) to
improve discrimination among hash codes in different clusters. UDH shares a similar objective function
with spectral hashing algorithm, and uses a modified graph Laplacian matrix to exploit local discriminant
information. In addition, UDH is designed to enable efficient out-of-sample extension. Experiments on
real world image datasets demonstrate the effectiveness of our novel approach for image retrieval.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Hashing-based approximate nearest neighbor search has
become popular due to its promising performance in terms of effi-
ciency and accuracy [1,2]. The performance of nearest neighbors
based algorithms can be significantly improved by exploiting a
similarity measure and learning the similarity measure is closely
related to the problem of feature learning [3–5].

A feasible way is to embed high-dimensional features into a
low-dimensional Hamming space where similar items can be effi-
ciently searched [6], which is usually performed by multiplying the
feature by a projection matrix, subtracting a threshold and retain-
ing the sign of the result. Locality sensitive hashing (LSH) algo-
rithms are proposed for an approximate nearest neighbor search
[7–9], but LSH is not stable and leads to bad results due to its ran-
domized approximate nearest neighbor search and data-
independent nature. The performance of date-dependent hash
functions based on machine learning techniques is better than
data-independent ones. Spectral hashing (SH) is a coding consis-
tency hashing algorithm and requires small bits [10]. The assump-
tion of uniformly distributed date does not hold in most cases
resulting in that the performance of SH is deteriorated. He et al.
extend SH by defining the hash function using kernels [11], Zhuang
et al. extend SH from ordinary graph to hypergraph [12,13]. Sparse
spectral hashing integrates sparse principal component analysis
[14] and boosting similarity sensitive hashing into SH [15]. LSH

relies on random projections and SH assumes features with uni-
formly distributed, which are problematic limitations. To avoid
these limitations, there are many methods are proposed by using
kernel functions to improved their performance [16–18].

Besides using manifold information as SH, we further consider
the discriminative information into hash learning. Manifold learn-
ing is a suitable strategy to learn the embedding matrix from the
manifold. Most manifold learning algorithms directly utilize
Gaussian function to compute Laplacian matrix, which suffers from
polytrope of bandwidth parameter. The discriminant information
is not sufficiently exploited in aforementioned methods, so we
construct a local clique comprising the data point and its neighbor-
ing data points in a nonlinear manifold by using local discriminant
models and global integration (LDMGI) [19]. LDMGI is exploited by
both manifold structure and local discriminant information simul-
taneously [19–23]. In our unsupervised discriminative hashing
(UDH) algorithm, we use the LDMGI Laplacian matrix to learn hash
codewords by using both manifold information and discriminant
information, and the out-of-sample problem is addressed by the
projection matrix which is computed during the hashing learning
process.

In summary, the main contribution of this paper is twofold:

1. An unsupervised discriminative hashing algorithm is proposed.
2. We use an addition term as regularization to learn a model for

out-of-sample data extrapolation.

The rest of this paper is organized as follows: In Section 2, we
deduce our novel approach and give the solution of our approach
and the algorithm to solve the regression framework. The
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experimental setting and analysis of results are showed in Sec-
tion 3. The conclusion and discussion of future work are given in
Section 4.

2. Unsupervised discriminative hashing

2.1. Preliminaries

Suppose that there are n training data points
X ¼ ½x1; x2; . . . ; xn� 2 Rd�n. H ¼ ½h1;h2; . . . ;hn�> 2 Bn�m denotes bin-
ary hash code of length m. A 2 Rn�n is the affinity matrix defined

by aij ¼ expð�kxi � xjk2=r2Þ and r defines the standard deviation.
Spectral hashing (SH) seeks compact binary codes for a given

data point where the similarity of data are preserved [10]. The
objective function of SH is:

min
X
ij

Aijkhi � hjk2

s:t: hi 2 f�1;1gm;
X
i

hi ¼ 0;

1
n

X
i

hih
>
i ¼ I

ð1Þ

where the constraint 1
n

P
ihih

>
i ¼ I requires the bits to be

uncorrelated.
By utilizing the spectral relaxation, (1) is rewritten by,

min TrðH>ðD� AÞHÞ
s:t: Hij 2 f�1;1g;

H>1 ¼ 0;H>H ¼ I

ð2Þ

where Trð�Þ is trace operator, D is a diagonal matrix and its elements
are column sums of A;dii ¼

P
jaij. The codewords can be obtained by

the m eigenvectors of D� A with minimal eigenvalue.

2.2. Objective function

Many objective functions of manifold learning algorithms can
be uniformly formulated by [20,24],

min
Y

TrðY>LYÞ
s:t: Y>Y ¼ I

ð3Þ

where Y ¼ ½y1; y2; . . . ; yn�> 2 Rn�m denotes the low dimensional
embedding of X; L ¼ A� D is the graph Laplacian matrix [25].

The Laplacian matrix plays a very important role in manifold
learning algorithms. Different from the affinity matrix in existing
manifold learning algorithms is usually pre-computed among
nearby data pairs by a fixed function, e.g., the RBF kernel, we con-
struct the Laplacian matrix taking account to both the discriminant
information and the manifold structure of data [19]. To globally
integrate the local discriminant models from all the cliques, the
Laplacian matrix is constructed by,

L ¼
Xn
i¼1

SiLiS
>
i ¼ ½S1; S2; . . . ; Sn�

L1
L2

. .
.

Ln

2
66664

3
77775½S1; S2; . . . ; Sn�

>

ð4Þ
where Li is a positive semi-definite matrix

Li ¼ HkðH>
k X

>
i XiHk þ kÞ�1

Hk;Xi ¼ ½x0; x1; . . . ; xk�1� is made up of xi

and its k� 1 nearest neighbors is the local data matrix comprising
all the data points in N kðxiÞ. Si 2 Bn�k is the selection matrix with
its element ðSiÞpq ¼ 1, if p ¼ Fifqg; ðSiÞpq ¼ 0, otherwise.

Fi ¼ fi0; i1; . . . ; ikg denotes the index set of the samples in N kðxiÞ.
Hk is the centering matrix,

Hk ¼ I � 1
k
11> ð5Þ

where I 2 Rk�k is an identity matrix and 1 is the column-vector con-
sisting of k ones.

In order to enable out-of-sample extension, we assume

Y ¼ X>W: ð6Þ
By ynew ¼ x>

newW , we can predict the output ynew if a new test data
point xnew is input.

Y is defined by (6) as a linear regression model, so we given the
following regression function to learn W,

min
W

kX>W � Yk2F þ bkWk2F : ð7Þ

We incorporate (7) as an additional term of (3), then we obtain,

min
Y ;W

TrðY>LYÞ þ akX>W � Yk2F þ bkWk2F
s:t: Y>Y ¼ I

ð8Þ

where the a and b are two regularization parameters.
When a tends to zero, (8) becomes (3) which can learn the non-

linear Y. When a tends to infinity, kX>W � Yk2F equal to zero due to
the minimization. So X>W � Y ¼ 0 and (8) becomes (7).

After learning the embedding matrix Y, the hash code H can be
obtained by:

H ¼ signðYÞ; ð9Þ
where signð�Þ is the sign function which makes the value binary.

2.3. Algorithm derivation

The Lagrangian function of (8) is,

LðW;Y; mÞ ¼ TrðY>LYÞ þ akX>W � Yk2F þ bkWk2F þ mTrðI � Y>YÞ
ð10Þ

where m is the Lagrangian multiplier.
The optimum Y and W can be obtained by calculating the first

order derivative (8) with respect to Y and W, respectively. By set-
ting the derivative to zero, we have,

@L
@W

¼ 2aXX>W � 2aXY � 2bW ¼ 0: ð11Þ

@L
@Y

¼ 2LY � 2aX>W þ 2aY � 2mY ¼ 0: ð12Þ

From (11), we obtain,

W ¼ XX> � b
a
I

� ��1

XY ¼ MY; ð13Þ

where M is denoted by,

M ¼ XX> � b
a
I

� ��1

X: ð14Þ

From (12), we obtain,

LY � aX>W þ aY ¼ mY: ð15Þ
Substituting (13) into (15), we obtain

ðL� aX>M þ aIÞY ¼ mY: ð16Þ
The optimal solution Y of (8) is formed by the m eigenvectors of

the term L� aX>M þ aI corresponding to the m smallest
eigenvalues.
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