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a b s t r a c t 

In this paper, a novel method for introducing multiplex data relationships to the SVM optimization pro- 

cess is presented. Different properties about the training data are encoded in graph structures, in the form 

of pairwise data relationships. Then, they are incorporated to the SVM optimization problem, as modified 

graph-regularized basekernels, each highlighting a different property about the training data. The con- 

tribution of each graph-regularized kernel to the SVM classification problem, is estimated automatically. 

Thereby, the solution of the proposed modified SVM optimization problem lies in a regularized space, 

where data similarity is expressed by a linear combination of multiple single-graph regularized kernels. 

The proposed method exploits and extends the findings of Multiple Kernel Learning and graph-based 

SVM method families. It is shown that the available kernel options for the former can be broadened, 

and the exhaustive parameter tuning for the latter can be eliminated. Moreover, both method families 

can be considered as special cases of the proposed formulation, hereafter. Our experimental evaluation 

in visual data classification problems denote the superiority of the proposed method. The obtained clas- 

sification performance gains can be explained by the exploitation of multiplex data relationships, during 

the classifier optimization process. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Computer vision/visual analysis methods have found industrial 

applications in several areas such as in robotic systems e.g., un- 

manned aerial vehicles and virtual reality, and their growth over 

the past few years have been immense. Such visual analysis ap- 

plications including face recognition, object recognition, human 

action recognition, human/object tracking and many other appli- 

cations, are commonly addressed as classification problems [1,2] . 

One of the most widely studied classification methods in visual 

analysis applications is the Support Vector Machines (SVM) clas- 

sifier. SVM-based methods and extensions have been employed in 

mathematical/engineering problems including one-class and mul- 

ticlass classification, regression and semi-supervised learning [3–

6] . In its simplest form, SVM learns from labeled data examples 

originating from two classes, the hyperplane that separates them 

with the maximum margin, at the training data input (or feature) 

space. After its first proposal, SVM has been extended to deter- 

mine decision functions in feature spaces obtained by employing 

non-linear data mappings, where data similarity is implicitly ex- 

pressed by a kernel function. The explicit data mapping is not re- 

quired to be known, if the adopted kernel function satisfies Mercer 
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conditions [7] . Common practices for determining a feature space 

where SVM provides satisfactory performance to a given classifica- 

tion/regression problem, involve selecting a kernel function from a 

set of widely adopted kernel functions e.g., polynomial, sigmoid, 

Radial Basis Function (RBF), and thereby tuning the correspond- 

ing hyperparameters using e.g., cross validation, based on previ- 

ous knowledge about the problem at hand. In every case, the per- 

formance of SVM heavily depends on the adopted kernel function 

choice, since the optimal solution for each problem might lie in 

unknown feature spaces. 

In order to determine the optimal feature space for SVM op- 

eration, Multiple Kernel Learning (MKL) methods have been pro- 

posed. Their basic assumption is that the optimal underlying data 

mapping, i.e., the optimal kernel function, is a weighted combina- 

tion (either linear or non-linear) of Multiple Kernel functions, the 

so-called basekernels [8–11] . The participation of each kernel to 

the optimal solution is determined by a parameter vector, i.e., the 

basekernel weights. The weights of the basekernels are estimated 

in an automated fashion along with the SVM hyperplane, by fol- 

lowing an additional optimization procedure (e.g., single-step se- 

quential optimization, two-step optimization). Standard MKL meth- 

ods employ L p or L 1 loss functions for determining the kernel 

weights, with the latter producing sparse solutions and the former 

providing fast convergence [12,13] . Besides the important theoret- 

ical advancements of MKL methods, only few basekernel combi- 

nations have found to be successful in realistic applications, i.e., 
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MKL methods method might suffer from overfitting issues or lim- 

ited performance gains [11–13] . 

A alternative approach for improving classification perfor- 

mance, are methods that introduce additional optimization 

options to the standard SVM optimization problem, exploiting 

discriminant/manifold learning criteria [6] . That is, slightly mod- 

ified SVM-based optimization problems have been proposed, that 

lead to standard SVM solutions in regularized spaces, expressed 

by a geometric transformation of the derived SVM hyperplane 

with the adopted criteria. For example, employing discriminant 

learning information e.g., within-class variance information [14] , 

promotes SVM hyperplanes that span along low data variance 

directions [15,16] . Alternatively, SVM-based methods have been 

proposed for semi-supervised learning case, by integrating SVM 

with manifold learning [6] , by exploiting k NN graphs as additional 

regularization criteria. It has been shown that exploiting such cri- 

teria at the fully supervised learning case is also beneficial to the 

classification performance. Since advances in graph-theory allow 

several manifold/discriminant learning criteria to be expressed 

using generic graph-based representation [17] , methods incor- 

porating the underlying data geometry in the SVM optimization 

problem can be implemented through graph-based SVM methods 

[18–20] . The adoption of generic graph structures within the 

SVM optimization process, containing e.g., intrinsic (within-class), 

or between-class data relationships, promotes solutions that are 

less prone to over-fitting. The disadvantage of graph-based SVM 

methods is that deriving the optimal classification space requires 

the evaluation of different graph settings, as well as tuning the 

additional introduced hyperparameters. 

In visual analysis applications, MKL and graph-based SVM 

methods have been successfully employed over the past few years. 

Their success can be mainly attributed to the exploitation of the 

multimodal/multiplex structure of images and video data [21] , re- 

lated to e.g., spatial and temporal information, information ex- 

tracted by multiple descriptor types, or even noise generated 

by camera movement, multiple viewing angles and illumination 

changes. All this information cannot be efficiently encoded with a 

single kernel matrix. Our work was inspired by the successful ex- 

ploitation of multiple graphs in related application scenarios, e.g., 

label propagation [22–26] . Therefore, we have devised a classifica- 

tion method that introduces multiple graphs to the SVM optimiza- 

tion problem, by exploiting the intuitions of both MKL and graph- 

based SVM method families. 

In this paper, a novel classification method that incorporates 

multiplex data relationships to the SVM optimization process, is 

presented. Multiplex data relationships are encoded in the form of 

multiple graph structures, containing pairwise data relationships, 

each corresponding to a specific data property. We propose a mod- 

ified SVM optimization problem, that incorporates this informa- 

tion. As an effect, the generated SVM hyperplane is driven to di- 

rections where the most discriminant training data properties are 

highlighted. From our derivations, it is shown that the solution of 

the proposed optimization problem lies in a modified space, where 

data similarity is explicitly determined by a linear combination of 

graph-regularized kernel matrices. Moreover, it is proven that both 

Multiple Kernel Learning and Graph-based SVM method families 

method families can be formulated as special cases of the pro- 

posed method, hereafter. Finally, the proposed method exploits and 

extends the findings of Multiple Kernel Learning and graph-based 

SVM method families, by broadening the available kernel options 

for the former, and eliminating exhaustive parameter tuning for 

the latter. 

2. Related work 

In this section, we overview the preliminary material re- 

quired to introduce the proposed method. Section 2.1 contains the 

description of the generic MKL–SVM optimization problem and 

Section 2.2 contains an overview of the recently proposed Graph- 

Embedded Support Vector Machines, exploiting a single graph in 

its optimization problem for regularization purposes. 

2.1. Multiple Kernel learning support vector machines 

Let a set of labeled data S = { x i , y i } , i = 1 , . . . , N sampled from 

X × Y, where X ∈ R 

D and Y ∈ {−1 , 1 } , that is employed in order 

to train an SVM classifier. MKL–SVM methods optimize for im- 

plicitly determining the optimal feature space for solving the SVM 

optimization problem. Similarity in that space is reproduced by 

a linear or non-linear combination of Multiple Kernel functions 

[10,13,27–30] . Let M mapping functions φm 

(·) �→ H 

m , m = 1 , . . . , M

that have been employed as base data mappings. Similarity in 

the respective spaces is reproduced by the associated basekernel 

function κm 

(·, ·) = φm 

(·) T φm 

(·) , and H 

m is a Reproducing Kernel 

Hilbert Space (RKHS). Assuming M basekernels have been linearly 

combined, then the obtained space H is also a RKHS, reproduced 

by kernel κ( · , · ). Similarity in that space can be calculated explic- 

itly by a weighted summation of the basekernels, as follows: 

κ(·, ·) = 

M ∑ 

m =1 

μm 

κm 

(·, ·) , (1) 

where κm 

is the m th kernel function weighted by a parameter 

μm 

≥ 0. 

In order to learn the kernel weighting parameters μm 

and the 

optimal SVM hyperplane at the same time, the MKL–SVM opti- 

mization problem is formed as a max-min optimization problem: 

max 
α

min 

μ

N ∑ 

i =1 

αi −
1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

αi α j y i y j 

M ∑ 

m =1 

μm 

κm 

(x i , x j ) 

s . t . 0 ≤ αi ≤ c and 

M ∑ 

m =1 

μp 
m 

= 1 , (2) 

where a is the support vector coefficient vector and p ≥ 1 is a pa- 

rameter that affects the sparsity of the obtained basekernel com- 

bination. The above defined optimization problem can be solved 

sequentially or in an iterative manner, keeping a or μ as con- 

stants in the respective optimization steps. Assuming that the 

kernel weighting parameters μ have been determined, then K = ∑ M 

m =1 μm 

K m 

is the kernel matrix that can be employed for solving 

the standard SVM classification problem. According to Representer 

Theorem [7] , the relevant SVM hyperplane w = �a that lies in the 

RKHS H, can be reconstructed by the determined support vector 

coefficient vector a and the arbitrary training data representations 

� ∈ H. Data similarity in that space can only be reproduced by the 

basekernel combination, since the kernel K cannot be calculated, 

otherwise. 

After training the classifier, a test sample x is classified to the 

positive or negative training class, according to the outputs of the 

following decision function: 

f (x ) = 

N ∑ 

i =1 

y i αi 

M ∑ 

m =1 

μm 

κm 

(x i , x ) + b, (3) 

where b is the standard SVM bias term. Finally, the test sample is 

classified to the positive class if sign ( f ( x )) ≥ 0 or the negative class, 

otherwise. 

2.2. Support Vector Machines exploiting geometric data relationships 

Graph-based SVM methods exploit data relationships expressed 

by a single graph in the SVM optimization problem [18,20] . To 

this end, it is assumed that the training data X = { x 1 , . . . , x N } 
have been embedded in an undirected weighted graph G = {X , W } , 
where W ∈ R 

N×N is the graph weight matrix. It should be noted 

that non-linear data relationships might be expressed as well, by 
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