
Pattern Recognition 85 (2019) 26–36 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Hierarchical Bayesian image analysis: From low-level modeling to 

robust supervised learning 

� 

Adrien Lagrange 

a , ∗, Mathieu Fauvel b , Stéphane May 

c , Nicolas Dobigeon 

a , d 

a University of Toulouse, IRIT/INP-ENSEEIHT Toulouse, BP 7122, Toulouse Cedex 7 31071, France 
b INRA, DYNAFOR, BP 32607, Auzeville-Tolosane, 31326 Castanet Tolosan, France 
c CNES, DCT/SI/AP, 18 Avenue Edouard Belin, 31400 Toulouse, France 
d Institut Universitaire de France, France 

a r t i c l e i n f o 

Article history: 

Received 30 November 2017 

Revised 11 May 2018 

Accepted 22 July 2018 

Available online 31 July 2018 

Keywords: 

Bayesian model 

Supervised learning 

Image interpretation 

Markov random field 

a b s t r a c t 

Within a supervised classification framework, labeled data are used to learn classifier parameters. Prior 

to that, it is generally required to perform dimensionality reduction via feature extraction. These pre- 

processing steps have motivated numerous research works aiming at recovering latent variables in an 

unsupervised context. This paper proposes a unified framework to perform classification and low-level 

modeling jointly. The main objective is to use the estimated latent variables as features for classification 

and to incorporate simultaneously supervised information to help latent variable extraction. The proposed 

hierarchical Bayesian model is divided into three stages: a first low-level modeling stage to estimate la- 

tent variables, a second stage clustering these features into statistically homogeneous groups and a last 

classification stage exploiting the (possibly badly) labeled data. Performance of the model is assessed 

in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques, 

namely unmixing and classification. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the context of image interpretation, numerous methods have 

been developed to extract meaningful information. Among them, 

generative models have received a particular attention due to their 

strong theoretical background and the great convenience they of- 

fer in term of interpretation of the fitted models compared to 

some model-free methods such as deep neural networks. These 

methods are based on an explicit statistical modeling of the data 

which allows very task-specific model to be derived [1] , or either 

more general models to be implemented to solve generic tasks, 

such as Gaussian mixture model for classification [2] . Task-specific 

and classification-like models are two different ways to reach an 

interpretable description of the data with respect to a particular 

applicative non-semantic issue. For instance, when analyzing im- 

ages, task-specific models aim at recovering the latent (possibly 

physics-based) structures underlying each pixel-wise measurement 
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[3] while classification provides a high-level information, reducing 

the pixel characterization to a unique label [4] . 

Classification is probably one of the most common way to inter- 

pret data, whatever the application field of interest [5] . This unde- 

niable appeal has been motivated by the simplicity of the resulting 

output. This simplicity induces the appreciable possibility of ben- 

efiting from training data at a relatively low cost. Indeed, experts 

can generally produce a ground-truth equivalent to the expected 

results of the classification for some amount of the data. This su- 

pervised approach allows a priori knowledge to be easily incorpo- 

rated to improve the quality of the inferred classification model. 

Nevertheless, supervised methods are significantly influenced by 

the size of the training set, its representativeness and reliability [6] . 

Moreover, in some extent, modeling the pixel-wise data by a single 

descriptor may appear as somehow limited. It is the reason why 

the user-defined classes often refer to some rather vague semantic 

meaning with a possible large intra-class variability. To overcome 

these issues, while simultaneously facing with theoretical limita- 

tions of the expected classifier ability of generalization [7] , an ap- 

proach consists in preceding the training stage with feature extrac- 

tion [8] . These feature extraction techniques, whether parametric 

or nonparametric, have also the great advantage of simultaneously 

and significantly reducing the data volume to be handled as well 

as the dimension of the space in which the training should be sub- 
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sequently conducted. Unfortunately, they are generally conducted 

in a separate manner before the classification task, i.e., without 

benefiting from any prior knowledge available as training data. 

Thus, a possible strategy is to consider a (possibly huge) set of fea- 

tures and selecting the relevant ones by appropriate optimization 

schemes [9] . 

This observation illustrates the difficulty of incorporating 

ground-truthed information into a feature extraction step or, more 

generally, into a latent (i.e., unobserved) structure analysis. Due to 

the versatility of the data description, producing expert ground- 

truth with such degrees of accuracy and flexibility would be time- 

consuming and thus prohibitive. For example, for a research prob- 

lem as important and well-documented as that of source sep- 

aration, only very few and recent attempts have been made to 

incorporate supervised knowledge provided by an end-user [10] . 

Nonetheless, latent structure analysis may offer a relevant and 

meaningful interpretation of the data, since various conceptual yet 

structured knowledge to be inferred can be incorporated into the 

modeling. In particular, when dealing with measurements provided 

by a sensor, task-related biophysical considerations may guide the 

model derivation [11] . This is typically the case when spectral mix- 

ture analysis is conducted to interpret hyperspectral images whose 

pixel measurements are modeled as combinations of elementary 

spectra corresponding to physical elementary components [12] . 

The contribution of this paper lies in the derivation of a uni- 

fied framework able to perform classification and latent structure 

modeling jointly. First, this framework has the primary advantage 

of recovering consistent high and low level image descriptions, ex- 

plicitly conducting hierarchical image analysis. Moreover, improve- 

ments in the results associated with both methods may be ex- 

pected thanks to the complementarity of the two approaches. The 

use of ground-truthed training data is not limited to driving the 

high level analysis, i.e., the classification task. Indeed, it also makes 

it possible to inform the low level analysis, i.e., the latent struc- 

ture modeling, which usually does not benefit well from such prior 

knowledge. On the other hand, the latent modeling inferred from 

each data as low level description can be used as features for clas- 

sification. A direct and expected side effect is the explicit dimen- 

sion reduction operated on the data before classification [7] . Fi- 

nally, the proposed hierarchical framework allows the classifica- 

tion to be robust to corruption of the ground-truth. As mentioned 

previously, performance of supervised classification may be ques- 

tioned by the reliability in the training dataset since it is generally 

built by human expert and thus probably corrupted by label er- 

rors resulting from ambiguity or human mistakes. For this reason, 

the problem of developing classification methods robust to label 

errors has been widely considered in the community [13,14] . Pur- 

suing this objective, the proposed framework also allows training 

data to be corrected if necessary. 

The interaction between the low and high level models is han- 

dled by the use of non-homogeneous Markov random fields (MRF) 

[15] . MRFs are probabilistic models widely-used to describe spa- 

tial interactions. Thus, when used to derive a prior model within 

a Bayesian approach, they are particularly well-adapted to capture 

spatial dependencies between the latent structures underlying im- 

ages [16,17] . For example, Chen et al. [18] proposed to use MRFs 

to perform clustering. The proposed framework incorporates two 

instances of MRF, ensuring consistency between the low and high 

level modeling, consistency with external data available as prior 

knowledge and a more classical spatial regularization. 

The remaining of the article is organized as follows. 

Section 2 presents the hierarchical Bayesian model proposed 

as a unifying framework to conduct low-level and high-level im- 

age interpretation. A Markov chain Monte Carlo (MCMC) method 

is derived in Section 3 to sample according to the joint posterior 

distribution of the resulting model parameters. Then, a particular 

Fig. 1. Directed acyclic graph of the proposed hierarchical Bayesian model. (User- 

defined parameters appear in dotted circles and external data in squares). 

and illustrative instance of the proposed framework is presented in 

Section 4 where hyperspectral images are analyzed under the dual 

scope of unmixing and classification. Finally, Section 5 concludes 

the paper and opens some research perspectives to this work. 

2. Bayesian model 

In order to propose a unifying framework offering multi-level 

image analysis, a hierarchical Bayesian model is derived to relate 

the observations and the task-related parameters of interest. This 

model is mainly composed of three main levels. The first level, pre- 

sented in Section 2.1 , takes care of a low-level modeling achieving 

latent structure analysis. The second stage then assumes that data 

samples (e.g., resulting from measurements) can be divided into 

several statistically homogeneous clusters through their respective 

latent structures. To identify the cluster memberships, these sam- 

ples are assigned discrete labels which are a priori described by 

a non-homogeneous Markov random field (MRF). This MRF com- 

bines two terms: the first one is related to the potential of a Potts- 

MRF to promote spatial regularity between neighboring pixels; the 

second term exploits labels from the higher level to promote co- 

herence between cluster and classification labels. This clustering 

process is detailed in Section 2.2 . Finally, the last stage of the 

model, explained in Section 2.3 , allows high-level labels to be es- 

timated, taking advantage of the availability of external knowledge 

as ground-truthed or expert-driven data, akin to a conventional su- 

pervised classification task. The whole model and its dependences 

are summarized by the directed acyclic graph in Fig. 1 . 

2.1. Low-level interpretation 

The low-level task aims at inferring P R -dimensional latent vari- 

able vectors a p ( ∀ p ∈ P � { 1 , . . . , P } ) appropriate for representing 

P respective d -dimensional observation vectors y p in a subspace 

of lower dimension than the original observation space, i.e., R ≤ d . 

The task may also include the estimation of the function or addi- 

tional parameters of the function relating the unobserved and ob- 

served variables. By denoting Y = [ y 1 , . . . , y P ] and A = [ a 1 , . . . , a P ] 

the d × P - and R × P - matrices gathering respectively the obser- 

vation and latent variable vectors, this relation can be expressed 

through the general statistical formulation 

Y | A , υ ∼ �( Y ; f lat ( A ) , υ) , (1) 

where �(·, υ) stands for a statistical model, e.g., resulting from 

physical or approximation considerations, f lat ( · ) is a deterministic 

function used to define the latent structure and υ are possible ad- 

ditional nuisance parameters. In most applicative contexts aimed 

by this work, the model �( · ) and function f lat ( · ) are separable 
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