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a b s t r a c t 

Due to the ability of capturing the geometry structure of data manifold, context-sensitive similarity has 

demonstrated impressive performances in the retrieval task. The key idea of context-sensitive similarity 

is that the similarity between two data points can be more reliably estimated with the local context of 

other points in the affinity graph. Therefore, neighborhood selection is a crucial factor for those algo- 

rithms, which affects the performance dramatically. In this paper, we propose a new algorithm called 

Smooth Neighborhood (SN) that mines the neighborhood structure to satisfy the manifold assumption. 

By doing so, nearby points on the underlying manifold are guaranteed to yield similar neighbors as much 

as possible. Moreover, SN is adjusted to tackle multiple affinity graphs by imposing a weight learning 

paradigm, and this is the primary difference compared with related works which are only applicable 

with one affinity graph. Finally, we integrate SN with Sparse Contextual Activation (SCA), a representative 

context-sensitive similarity proposed recently. Extensive experimental results and comparisons manifest 

that with the neighborhood structure generated by SN, the proposed framework can yield state-of-the-art 

performances on shape retrieval, image retrieval and 3D model retrieval. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Object retrieval [1] is an important topic in pattern recogni- 

tion [2] , computer vision [3] , multimedia computing [4,5] and ma- 

chine learning, which has been investigated for decades. A typi- 

cal retrieval system receives a query data as its input, and outputs 

the searching results which are expected to be visually similar to 

the given query. Therefore, the crucial issue in object retrieval is 

to define a reliable similarity between the query object and the 

database elements. In most cases, visual descriptors that are ro- 

bust to common deformations (e.g., rotation, occlusion, illumina- 

tion) are designed to assign each object a vectorial representation. 

Then, the pairwise matching between objects can be done in the 

Euclidean distance. 

In recent years, context-sensitive similarity [6,7] has attracted 

much attention due to its superior performances in object retrieval, 

which does not solely rely on the pairwise matching. These ap- 
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proaches have a very diverse nomenclature, such as contextual dis- 

similarity measure [8] , graph transduction [9–11] , affinity learn- 

ing [12,13] , ranking list comparison [2,14,15] , re-ranking [16–18] . 

However, the inherent principles of most those algorithms are al- 

most the same, that is, the similarity between two data points can 

be more accurately measured by taking the underlying manifold 

structure into account. In order to specify the differences among 

them systematically, Donoser and Bischof, [19] provide a generic 

framework called Diffusion Process and a thorough comparison of 

most aforementioned algorithms experimentally. Diffusion process 

is usually operated on an affinity graph, with the nodes represent- 

ing data points and the edge weights denoting the pairwise simi- 

larities between two adjacent nodes. In fact, the affinity graph de- 

fines a data manifold implicitly, then the similarities are diffused 

along the geodesic path of the manifold. 

As one of the most important conclusions quoted from Donoser 

and Bischof [19] , it is crucial to constrain the diffusion process lo- 

cally, since diffusion process is susceptible to noise edges in the 

affinity graph. The experimental observation supports the “local- 

ity” assumption in manifold learning [20] , that each data point and 

its neighbors lie on a linear patch of the manifold. It means that 

only quite short distances are reliable since they tend to associate 
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Fig. 1. The illustration of the proposed method with two similarity measures. For each pair of objects ( x i , x j ) having similarity W 

(v ) 
i j 

( v = 1 , 2 ), we learn their indicator 

functions on neighbor selections, which is constrained by the similarities. Then, the resulted costs can be used, in turn, to learn the weights of those similarities. 

with short geodesic distances along the data manifold. As a con- 

sequence, the nodes that diffusion process selects to spread the 

similarities on the affinity graph are usually the neighbors of the 

query which have large similarities (or small dissimilarities) with 

it. Hence, it is of great importance to construct robust neighbor- 

hood structures so that diffusion process can be performed in a 

proper way. 

The simplest way to establish the neighborhood structure is k- 

Nearest Neighbor (kNN) rule. Given a certain query, kNN rule se- 

lects K nodes with the largest edge weights to the query as its 

neighborhood. Some variants of kNN are also proposed, such as ε- 

neighbors, symmetric kNN, Mutual kNN [21] (also named as recip- 

rocal kNN in [22,23] ). As extensively proven in [21] , kNN is prone 

to including noise edges and nodes, thus leading to unsatisfactory 

retrieval performances. To overcome its defect, Dominant Neigh- 

borhood (DN) is proposed in [12] based on the analysis of domi- 

nant sets, and Consensus of kNN (CN) is proposed in [24] by ex- 

ploiting the consensus information of kNN. 

However, although these neighborhood analysis algorithms are 

embedded into some variants of diffusion process, they themselves 

do not capture the geometry of the data manifold. That is to say, 

they cannot preserve the property of local consistency that nearby 

points on the manifold are guaranteed to yield the same neigh- 

bors. For example, it usually occurs that two points belong to the 

same dense cluster, while they have no common neighbors if kNN 

rule or DN is used. In context-based retrieval, this problem is first 

proposed in [25] , and later emphasized again in [19] . Neverthe- 

less, they only alleviate the problem to a certain extent by localiz- 

ing the diffusion process using kNN on both sides (query side and 

database side), and do not intend to tackle the problem seriously. 

Moreover, previous works are only applicable with one affinity 

graph. When multiple affinity graphs are given, it becomes more 

challenging to accurately construct the neighborhood structures. 

Therein, the difficulties lie in two aspects. First, it is problematic 

to determine the weights of affinity graphs, which can distinguish 

the discriminative capacity of different similarity measures. Sec- 

ond, it is hard to aggregate the neighborhood structures generated 

with different affinity graphs, especially considering that retrieval 

is usually defined as an unsupervised task without prior knowl- 

edge. Of course, one can simply use a linear combination of multi- 

ple affinity graphs with equal weights. However, as demonstrated 

in our experiments, it is a suboptimal solution since the comple- 

mentary nature among multiple similarities is neglected. 

In this paper along with its earlier conference version [26] , we 

propose an algorithm called Smooth Neighborhood (SN) specifi- 

cally for neighborhood structure mining. As illustrated in Fig. 1 , 

the motivation of SN is that the indicator functions can be defined 

to reveal the behavior of neighbor selection on affinity graphs thus 

yielding a selecting cost for each graph, then the resulted costs can 

be used, in turn, to learn the weights of those affinity graphs in an 

unsupervised manner. Apart from related works, our primary con- 

tributions can be divided into three parts: 

1. SN enables the neighbor selection to vary smoothly with re- 

spect to the local geometry of the data manifold, thus the input 

similarity can be sufficiently reflected in the behavior of neigh- 

bor selection. 

2. SN is suitable to deal with more than one affinity graph. It 

learns a shared neighborhood structure and the importance of 

multiple affinity graphs in a unified framework. Therefore, the 

weight learning procedure and the neighborhood aggregation 

procedure can be done simultaneously. 

3. Instead of using some heuristic rules that stem from empirical 

observations (e.g., Mutual kNN), we give a formal formulation 

to SN and derive an iterative solution to the optimization prob- 

lem with proven convergence. 

Compared with the conference version, the work (1) gives a 

deeper analysis on the motivation and the difference from relevant 

works; (2) supplements the properties of SN, such as the proof 

of convergence and convexity; (3) provides more thorough experi- 

mental evaluations with different types of data pattern, such as 3D 

model retrieval. 

The rest of paper is organized as follows. In Section 2 , we re- 

view some representative algorithms which have a close relation- 

ship with SN. The formulation and optimization of SN are given in 

Section 3 . In Section 4 , the effectiveness of SN is verified with thor- 

ough experiments and comparisons on shape retrieval, image re- 

trieval and 3D model retrieval. Conclusions are given in Section 5 . 

2. Related work 

Tremendous developments in context-sensitive similarities ad- 

vance image and shape retrieval remarkably. A family of algorithms 

called diffusion process is proposed in the literature, such as Graph 

Transduction [9] , Locally Constrained Diffusion Process (LCDP) [25] , 

Locally Constrained Mixed Diffusion (LCMD) [27] , Tensor Product 

Graph Diffusion (TPG) [12] , Shortest Path Propagation (SSP) [10] , 

Graph-PageRank [17] , etc. In the survey paper [19] , most of these 

approaches are elegantly summarized in a unified framework. 

As shown in [19] , a proper selection of neighbors ensures the 

diffusion process to work well in real cases. However, most vari- 

ants of diffusion process use k-Nearest Neighbor (kNN) rule for its 

simplicity. Although [19] also uses kNN rule, it points out that it is 

still an open issue to select a reasonable local neighborhood. Re- 
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