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a b s t r a c t 

Logistic regression is by far the most widely used classifier in real-world applications. In this paper, we 

benchmark the state-of-the-art active learning methods for logistic regression and discuss and illustrate 

their underlying characteristics. Experiments are carried out on three synthetic datasets and 44 real- 

world datasets, providing insight into the behaviors of these active learning methods with respect to the 

area of the learning curve (which plots classification accuracy as a function of the number of queried 

examples) and their computational costs. Surprisingly, one of the earliest and simplest suggested ac- 

tive learning methods, i.e., uncertainty sampling, performs exceptionally well overall. Another remarkable 

finding is that random sampling, which is the rudimentary baseline to improve upon, is not overwhelmed 

by individual active learning techniques in many cases. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In practice, it is easy to acquire a large amount of data, yet diffi- 

cult, time-consuming, and expensive to label data since human ex- 

perts are usually involved [65] . For instance, collecting millions of 

images from Google is not that difficult, while categorizing these 

images may need a lot of manpower and other resources. Active 

learning addresses this challenge by selecting the most valuable 

subset from the whole data set for human annotation. Many re- 

search studies have demonstrated that active learning is effective 

in maintaining good performance while reducing the overall label- 

ing effort over a diverse range of applications, such as text catego- 

rization [5,73] , medical image classification [34,62] , remote sensing 

[18,63,74] , image retrieval [13,53,80] and natural language process- 

ing [71] . 

To choose the most informative subset, it is of vital impor- 

tance to choose an appropriate criterion which measures the 

usefulness of unlabeled instances. Most commonly used criteria 

in active learning include query-by-committee [69] , uncertainty 

sampling [73] , expected error minimization [30,37,61] , and vari- 

ance reduction [64,79,81] , variance maximization [77] , maximum 

model change [6,24,42,68] and the “min-max” view active learn- 

ing [35,38] . They are derived from diverse heuristics and classifier 

dependent. Some of them are specifically designed for one partic- 
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ular classifier, e.g. the simple margin criterion for support vector 

machines [73] , while others can be adapted to different types of 

classifiers, e.g. expected error reduction for logistic regression and 

naive Bayes [61] . 

In this work, we benchmark the state-of-the-art active learn- 

ing algorithms built on logistic regression. Logistic regression is 

chosen because it is the most widely applied classifier in gen- 

eral and especially outside of machine learning in the applied sci- 

ences. 1 In addition, it is also used by most active learners (see, for 

instance, [17,28,30,31,34,36,43,44,52,64] ). In part, the latter is be- 

cause logistic regression readily provides an estimate of the pos- 

terior class probability, which is often exploited in active learn- 

ing. In the binary classification setting, logistic regression models 

a posterior probability P (y i | x i ) = 1 / (1 + exp 

−y i w 

T x i ) , where x i ∈ R 

d 

is a training feature vector labeled with y i ∈ { +1 , −1 } and w is 

the d -dimensional parameter vector that is determined at training 

time. During training, we minimize the log-likelihood of the train- 

ing data L to learn the model parameter w as follows: 

min 

w 

λ

2 

‖ w ‖ 

2 + 

∑ 

x i ∈L 
log (1 + exp 

−y i w 

T x i ) (1) 

where ‖ w ‖ 2 is a regularization term for which λ controls its 

influence. 

1 An advanced search on www.nature.com on October 1, 2017, gives us, for ex- 

ample, 1,126 hits for “support vector machine”, 6,182 for “nearest neighbor” (con- 

taining more hits than just to the classifier), 1,231 for “LDA”, and 14,715 for “logistic 

regression”. Other classifiers are retrieved even less often. 
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All in all, we study six different categories of active learning al- 

gorithms in which nine active learners are compared in an exten- 

sive benchmark study. Our work differs from two relevant earlier 

surveys on active learning [25,65] in two important respects: (1) 

our work constructs extensive experiments to investigate the em- 

pirical behaviors of these active learning algorithms while these 

two surveys do not compare the performance of different methods; 

(2) our paper presents a detailed summary of the active learning 

algorithms on the basis of logistic regression classifier because of 

its popularity while these two surveys offer an overview of exist- 

ing active learning algorithms without specifying a type of classi- 

fiers. We believe that an empirical comparison can lead to a better 

understanding of the characteristics of active learning algorithms 

and provide guidance to the practitioner to choose a proper active 

learning algorithm. We should also mention the work by Schein 

and Ungar [64] here, that already provided an evaluation of ac- 

tive learning methods using logistic regression. In this paper, how- 

ever, we compare some new methods, which appeared only re- 

cently [6,38,50] , and we generally provide a fair and comprehen- 

sive comparison with much more extensively conducted experi- 

ments. We also investigate how active learning algorithms gener- 

ally perform in comparison to random sampling, and point out the 

underlying relationships among the compared methods. The com- 

putational cost of each method is also evaluated. 

In this paper, we focus on the pool-based setting, where few la- 

beled samples and a large pool of unlabeled samples are available 

[65] . We consider the myopic active learning which assumes that 

a single unlabeled instance is queried at a time. Batch mode active 

learning, which selects a batch of examples simultaneously, is not 

considered in this work and we refer to [8–10,12,31,34] for further 

background of typical approaches. 

The main contributions of this work can be summarized as 

follows: 

1. A review of the state-of-the-art active learning algorithms built 

on logistic regression is presented, in which links and relation- 

ships between methods are explicated; 

2. A preference map is proposed to reveal characteristic similari- 

ties and differences of the selection locations in 2D problems; 

3. Extensive experiments on 44 real-world datasets and three ar- 

tificial sets are carried out; 

4. Insight is provided for the behaviors of classification perfor- 

mance and computational cost. 

1.1. Outline 

The remainder of the paper is organized as follows. 

Section 2 describes the general procedure of active learning 

and reviews the various approaches to active learning built on 

logistic regression. At the same time it sketches the relation- 

ships among different methods. Extensive experimental results 

on synthetic and real-world datasets are given in Section 3 . The 

experimental setup is described and the outcomes are reported. 

More importantly, it provides an extensive discussion of the 

findings and aims to critically evaluate these compared methods. 

Section 4 concludes our work. 

2. Active learning strategies and methods 

For myopic active learning in the pool-based scenario, we as- 

sume that a small set of labeled instances with a large pool of 

unlabeled samples are available. Let L = { (x i , y i ) } l i =1 represent the 

training data set that consists of l labeled instances and let U
be the pool of unlabeled instances { x i } n i = l+1 . Each x i ∈ R 

d is a d - 

dimensional feature vector and y i ∈ C is the class label of x i . In this 

work we restrict ourselves to binary classification, which does not 

Active
Learning

Error Reduction

Variance Reduction

Maximum Error Reduction [30]

Combined Error Reduction [31]

Expected Error Reduction [61]

Expected Variance Reduction [64]

Fisher Information [81]

Adaptive Approach Adaptive Active Learning [50]

Maximum Model Change Maximum Model Change [6]

Minimum Loss Increase Minimum Loss Increase [35, 38]

Uncertainty Sampling Maximum Entropy [48]

Fig. 1. Nine active learners from six different categories are used in our 

comparison. 

pose any essential limitation. For this reason, C is simply taken to 

be the set { +1 , −1 } . The active learner will select an instance x ∗

from the unlabeled pool based on its measure of utility, obtain the 

corresponding label y ∗ by manual annotation and extend the train- 

ing set with the new labeled sample L = L ∪ (x ∗, y ∗) . The whole 

procedure is repeated until some stopping criteria are satisfied. 

The remaining part of this section presents six different cat- 

egories of active learning algorithms built on logistic regression, 

i.e., uncertainty sampling, error reduction, variance reduction, min- 

imum loss increase, maximum model change and an adaptive ap- 

proach, one per subsection. As also shown in Fig. 1 , nine different 

active learners which relate to the above six categories are used in 

our benchmark and comparison. 

2.1. Uncertainty sampling 

Uncertainty sampling, which selects the instances for which the 

current classifier is least certain, is a widely used active learning 

method [48,65] . Querying these least certain instances can help the 

model refine the decision boundary. Intuitively, the distances be- 

tween unlabeled instances and the decision boundary can be mea- 

sures of the uncertainty. Tong and Koller [73] proposed a simple 

margin approach which queries the instance closest to the decision 

boundary. 

Entropy is a different and more widely used general measure 

of uncertainty [70] . Entropy-based approaches query the instances 

with maximum entropy : 

x ∗ = arg max 
x ∈U 

−
∑ 

y ∈ C 
P L (y | x ) log P L (y | x ) (2) 

where P L (y | x ) is the conditional probability of y given x according 

to a logistic classifier trained on L . This method is called ENTROPY 

for short. It calculates the entropy of each x ∈ U and selects the 

instance x ∗ which has maximum entropy. It can be used with any 

classifier that produces probabilistic outputs. For binary classifica- 

tion, ENTROPY is equivalent to the simple margin approach [73] . 

One of the main risks of such uncertainty sampling based ap- 

proaches lies in the fact that, due to a lack of exploration, they can 

get stuck at suboptimal solutions, continuously selecting instances 

which do not improve the current classifier at all [38] . 

2.2. Error reduction 

Error reduction approaches are another type of popular active 

learning methods [30,31,37,61] . These approaches attempt to mea- 

sure how much the generalization error is likely to be reduced 

when adding one new instance into the labeled dataset. Though 

one does not have direct access to the future test data, Roy and 
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