
Pattern Recognition 82 (2018) 16–30

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

A novel and simple strategy for evolving prototype based clustering

David G. Márquez

a , b , ∗, Abraham Otero

a , Paulo Félix

b , Constantino A. García

b

a Department of Information and Communications Systems Engineering, University San Pablo CEU, Madrid 28668, Spain
b Centro de Investigación en Tecnoloxías da Información (CITIUS), University of Santiago de Compostela, Santiago de Compostela 15706, Spain

a r t i c l e i n f o

Article history:

Received 3 July 2017

Revised 27 February 2018

Accepted 19 April 2018

Available online 21 April 2018

Keywords:

Evolving clustering

Data stream

Concept drift

Gaussian mixture models

K-means

Cluster evolution

a b s t r a c t

In this paper, we present a novel strategy for evolving prototype based clusters that uses a weighting

scheme to “progressively forget” old samples. The rate of forgetfulness can be controlled by a single in-

tuitive memory parameter. This weighting scheme can be used to create efficient dynamic summaries,

such as mean or covariance, of data streams. Using this weighting scheme we have developed evolving

versions of the K-means and Gaussian Mixture models algorithms. They can analyze the incoming data in

an online manner and they are specially geared towards dealing with concept drift originated by changes

in the underlying data distribution. The algorithms were validated over a simulated database where a

wide variety of concept drift situations occur and over real data related to property sales, showing their

capability to follow changes in data.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in sensing hardware and communication networks in

recent years have led to a great increase in the real-time data

available from sources such as industrial processes, networking

traffic, social media content, credit card and retail transactions, etc.

These data sources provide a large volume of data, often generated

continuously as a data stream. A data stream is a potentially un-

bounded ordered sequence of data that must be accessed in or-

der and that can be read only once [1] . Once a datum from a data

stream has been processed it is discarded, unless explicitly stored

in memory, which typically can only be done for a small amount

of data relative to the size of the stream. A data stream could be

stored on a non-random access device (such a hard disk) or, quite

often nowadays, it can arrive online through a network connection.

In the latter case, the data stream may represent some evolving

process whose features change over time and that has to be pro-

cessed in real time [2] .

Evolving clustering (EC), sometimes also referred in the litera-

ture as incremental clustering, online clustering or dynamic clus-

tering [3] , deals with data stream clustering [4,5] . EC algorithms

have to start over a subset of the data and the initial partitions are

updated (they “evolve”) when new data are processed. This could

happen because of the need to process a large data set which,

∗ Corresponding Author at: Department of Information and Communications Sys-

tems Engineering, University San Pablo CEU, Madrid 28668, Spain.

E-mail address: david.gonzalez.marquez@gmail.com (D.G. Márquez).

due to space limitations, cannot be loaded simultaneously in main

memory [6–8] ; or because the data are not all available from the

beginning, but they arrive gradually as a possibly non-ending on-

line data stream and a solution to the clustering problem is re-

quired before all data are available [9] .

Some EC algorithms assume that there is a static structure un-

derlying the data [10] . This structure will be gradually defined as

more data are processed. The static structure may be due to the

lack of a true time dependency in the data. In this case the prob-

lem they address is the inability to simultaneously load in main

memory all the data [10] . The ordered nature of the sequence

arises from the need to storage and process data in a certain order,

but there is no temporal relationship (at least not relevant for the

problem at hand) among the data. Other EC algorithms that also

assume a static underlying data structure have been designed to

start the clustering before all the data is available, and they often

are capable of providing partial solutions to the clustering problem

at any intermediate point [10–12] . In both cases, cluster evolution

corresponds to a refinement in its definition when more data are

processed, not to changes over time in the processes underlying

the data.

Other EC algorithms, among which are the ones presented in

this paper, assume that the structure underlying the data evolves

over time [13–16] . The structure evolution can be due to con-

cept drift; i.e., the position and/or other features of the clusters

change through time [17,18] . This poses a challenge when assess-

ing the quality of an EC algorithm, since the evaluation should not

be based only on whether the algorithm has succeeded or not in

https://doi.org/10.1016/j.patcog.2018.04.020

0031-3203/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.patcog.2018.04.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.04.020&domain=pdf
mailto:david.gonzalez.marquez@gmail.com
https://doi.org/10.1016/j.patcog.2018.04.020

D.G. Márquez et al. / Pattern Recognition 82 (2018) 16–30 17

finding the final structure of the data, but it should also be as-

sessed whether the intermediate solutions reflect the evolution of

the structure over time, an issue that is often ignored in the liter-

ature [13,15,16] .

When dealing with cluster evolution, it is necessary to reach

a compromise between preserving the definition of a cluster that

has already been learned (especially in the presence of noise and

outliers) and allowing its (possibly fast) evolution when the un-

derlying data structure changes. This is the “stability-plasticity

dilemma” [19] : how to remain adaptive (plastic) in response to sig-

nificant input change and stable in response to irrelevant input.

Too much plasticity will result in high risk of previous structure

being destroyed by noise and/or outliers, whereas too much stabil-

ity will impede adaptation to changes [20] .

More often than not, the emphasis in EC literature dealing with

clustering in the presence of concept drift is placed on dynami-

cally finding through model selection techniques the appropriate

number of clusters to represent the data set through mergers and

divisions of the existing clusters [13,16,20–22] . Finding dynamically

and efficiently the appropriate number of clusters is a genuine is-

sue. But, also it is tracking the drift of the existing clusters. In the

literature this is often achieved by combining a new sample that

has been assigned to a cluster with some type of representative

of the cluster (for example, an average value or a probability dis-

tribution). This combination is weighted based on the number of

samples which had previously fallen in the cluster [16,20,22] but it

does not take into account the order of arrival. When the sample

number 1 million, for example, is assigned to a cluster, its weight

in the definition of the cluster’s prototype will be the same as the

weight of the first sample that fell on it [9,13,16,20,22] . When the

underlying structure evolves over time the order of arrival of the

datum should be taken into account: as a general rule, the most

recent data should carry more weight in defining the current par-

titions than older data [23] . In fact, if there has been a large drift,

the oldest samples may be irrelevant for the current definition of

the cluster. However, the equally weighted combination approach

presents a decreasing ability to track drift when the number of

samples increases, making it unsuitable for modelling clusters with

continuous and/or abrupt drifts through time due to favoring too

much stability.

In the literature we can also find proposals that decrease the

weight of a sample in the definition of a cluster when the sam-

ple ages, often using an exponential function that depends on a

parameter set by the user and the difference between the current

time and the time of arrival of the sample [24–26] . The param-

eter set by the user provides a mechanism to achieve a compro-

mise appropriate for the problem between maintaining the struc-

ture learned and allowing its evolution. In some scenarios it may

be desirable to allow a faster evolution of clusters, despite the in-

creased risk of the cluster’s prototypes being affected by noise and

outliers. In others, we may want to be more conservative when

changing prototype features that have already been learned [3] .

However, these strategies require updating the parameters that de-

fine the cluster when time elapses, even if no samples have been

added to the cluster. This update implies the storage of (at least)

the most recent samples that have fallen in the cluster, or of some

type of summary of them. Furthermore, the operation of updating

the cluster is more expensive from a computational point of view

than the constant sample weight strategy of combining the newly

arrived sample with the prototype of the cluster.

In this paper a novel and simple strategy to evolve prototype

based clusters with concept drift caused by changes in the un-

derlying data distribution is presented. The strategy is based on

creating a dynamic summary of the data stream corresponding

with a cluster. This summary is based on an adjustable weight-

ing scheme that enables the algorithm to “forget” old samples at

a rate controlled by a single intuitive memory parameter. The re-

mainder of this paper is structured as follows: in Section 2 we in-

troduce the weighting scheme that permits gradually forgetting old

samples at a controlled rate, and we show how it can be used

to create dynamic summaries of data streams. In Section 3 we

show how these summaries can be used to build evolutionary ver-

sions of K-means and Gaussian Mixture models. Section 4 pro-

poses a solution to evaluating not only the final configuration,

but also the intermediate solutions provided by EC algorithms

when the underlying structure of the data evolves. Section 5 in-

troduces a database where different scenarios of concept drift oc-

cur. In Section 6 we show the performance of the algorithms pre-

sented in Section 3 over this database and over real data. Finally,

Section 7 discusses the paper and Section 8 presents the conclu-

sions.

2. Dynamic summarization of data streams

Through this paper we shall denote vectors with lower case

bold symbols. All vectors are assumed to be row vectors. Upper-

case bold letters denote matrices. The superscript T denotes the

transpose of both vectors and matrices.

We define a data stream X as an open-ended ordered data

set, X = { x [1] , x [2] , . . . , x [i] , . . . } , where the sample x [i] has ar-

rived in the ith position. The arrival time of consecutive samples

needs not to be equidistant. The data available from the stream

X up to the sample x [n], X n , is made up of the samples X n =

{ x [1] , x [2] , . . . , x [i] , . . . , x [n] } , where each sample x [i] is made up of

p features: x [i] = (x 1 [i] , x 2 [i] , . . . , x j [i] , . . . , x p [i]) .

We shall define the weight w i, n of the sample x [i] after n sam-

ples of the stream are available as:

w i,n =

1

(n + 1 − i)
1
m

, (1)

where m ∈ (0, ∞) is a memory parameter that controls the rate at

which old samples are forgotten. The weight of the last sample is

always one, whereas the other samples’ weight decreases mono-

tonically having the oldest samples the lowest weight. If m → 0

there is no memory; i.e., w i,n = 0 for all i < n and w n,n = 1 . There-

fore, all the samples are forgotten but the last one. If m → ∞ we

have infinite memory; i.e., w i,n = 1 for all the samples. Therefore,

all samples are remembered and they all have the same weight.

For higher values of m more weight is given to older samples, and

for smaller values more emphasis is made on the most recent sam-

ples.

This weighting scheme is intuitive and easy to understand.

However, it has a fundamental flaw that prevents its application to

rapidly changing high volume data streams. In Eq. (1) the weight

of each sample depends on the total number of samples available

n . When a new sample arrives, n changes, and therefore the weight

w i, n of all the previous samples must be recalculated. Furthermore,

if the sample is going to be used to compute some statistic (such

as mean or variance) the sample itself must be stored to recalcu-

late the statistic with the new weight; and this process must be re-

peated for each new sample of the stream. This imposes an unac-

ceptable computing and storage burden for large streams. For these

reasons, we devise an alternative weighting scheme with a simi-

lar purpose as Eq. (1) but that avoids recalculating the weights of

older samples each time a new sample arrives. To achieve this in-

stead of decreasing the old samples weight we increase the weight

of the new sample:

w i = i
1
m . (2)

In Eq. (2) the weight of the sample x [i] depends on its order

of arrival, but not on the total number of samples available. When

Download English Version:

https://daneshyari.com/en/article/6938773

Download Persian Version:

https://daneshyari.com/article/6938773

Daneshyari.com

https://daneshyari.com/en/article/6938773
https://daneshyari.com/article/6938773
https://daneshyari.com

