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a b s t r a c t 

Constructing a good graph that can capture intrinsic data structures is critical for graph-based semi- 

supervised learning methods, which are widely applied for hyperspectral image (HSI) classification with 

small amount of labeled samples. 

Among the existing graph construction methods, sparse representation (SR)-based methods have shown 

impressive performance on semi-supervised HSI classification tasks. However, most SR-based algorithms 

fail to consider the rich spatial information of HSI, which has been shown beneficial for classification 

tasks. 

In this paper, we propose a spatial and class structure regularized sparse representation (SCSSR) graph for 

semi-supervised HSI classification. Specifically, spatial information has been incorporated into SR model 

via the graph Laplacian regularization, it assumes that the spatial neighbors should have similar rep- 

resentation coefficients, the obtained coefficient matrix thus can reflect the similarity between samples 

more accurately. Besides, we also incorporate probabilistic class structure, which implies the probabilistic 

relationship between each sample and each class, into SR model to further improve discriminability of 

graph. 

The experimental results on Hyperion and AVIRIS hyperspectral data show that our method outperforms 

state of the art methods. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

For supervised hyperspectral image (HSI) classification [1–5] , 

we often lack sufficient labeled data which are usually costly and 

time-consuming to obtain. On the other hand, a large number of 

unlabeled data can be acquired effortlessly. Semi-supervised learn- 

ing (SSL), which can make use of rich unlabeled samples, has 

recently been proposed to solve above problem [6,7] . Many SSL 

methods have been employed for HSI classification, they can be 

coarsely divided into four categories: (1) Expectation-maximization 

with generative mixture models [8] ; (2) co-training based algo- 

rithm [9] ; (3) Low-density separation algorithms, such as trans- 

ductive support vector machines [10] ; (4) Graph-based methods 

[11–16] . Among current SSL methods, graph-based SSL methods are 
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particularly appealing since they have elegant mathematical for- 

mulation and can obtain a close-form solution [6,11–13,17–19] . 

The heart of graph-based SSL is to construct a good graph that 

can capture the intrinsic data structures. Graph-based SSL meth- 

ods generally involve two steps. First, a graph is constructed where 

nodes are all samples (including labeled and unlabeled samples), 

and the edge weights denote the similarity between pairwise data 

points. Then, label information of the labeled data is propagated 

to the unlabeled data through the graph. Though many different 

objective functions have been used in graph-based SSL approaches 

to characterize the propagation process, most of them try to com- 

ply with the so-called cluster assumption [20] , i.e., samples on the 

same manifold or structure are likely to share the same label. In 

general, the underlying manifold is approximatively modeled by a 

graph constructed from all samples. Therefore, graph construction 

is critical for graph-based SSL methods [18,21] . 

Many effort s have been made to learn an effective graph from 

data points for graph-based SSL. Traditional methods such as k - 

nearest neighbors ( k NN) [6,11,17,18,22,23] , nonnegative local lin- 
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ear reconstruction (LLR) [19] and Local Manifold Learning (LML) 

[13] mainly employ Euclidean distance to build graph, and can 

only capture the local data structure. As a result, these methods 

are very sensitive to the data noise and errors. Moreover, tradi- 

tional methods always have some fixed parameters which required 

tuning manually in graph construction, thus cannot produce data- 

adaptive neighborhoods. 

In recent years, motivated by the advance in the area of 

compressed sensing [24–26] , several sparse representation (SR)- 

based methods have been proposed to construct graphs for graph- 

based SSL [12,27–29] . Different from traditional methods, SR-based 

graphs express each sample as a sparse linear combination of all 

other data samples, thus are able to exploit the global structures 

of data. Moreover, by solving an � 1 optimization problem, these 

methods can obtain the graph adjacency structure and weights au- 

tomatically and simultaneously. Specifically, Cheng et al. [27] and 

Yan and Wang [28] both propose a � 1 -graph structure, which mea- 

sures the similarity among data points by encoding each sample 

as a � 1 sparse linear combination of the other samples. Gu and 

Feng [12] apply � 1 graph to HSI classification. Since nonnegative 

characteristic is helpful for graph learning, He et al. [29] propose a 

sparse probability graph (SPG) by enforcing the representation co- 

efficients to be nonnegative. To deal with noise data, Wang et al. 

[30] propose a modified version of SR, which is provably effective 

in identifying the underlying subspaces even with noisy data . Ad- 

ditionally, many other graphs have been developed based on SR 

in recent years. For example, Graph regularized sparse represen- 

tation [31–33] use the graph Laplacian regularization to improve 

the quality of SR graph. By combining SR and low-rank represen- 

tation (LRR) [34,35] , Zhuang et al. [36,37] propose a nonnegative 

low-rank and sparse (NNLRS) model. [38,39] introduce a discrim- 

inant SR (DSR) graph structure for HSI classification, the weights 

of which are the product of SR weights and the class similarity 

weights, which are obtained by estimating the probability of two 

samples belonging to the same class. Recently, Shao et al. [15] pro- 

pose a probabilistic class structure regularized sparse representa- 

tion (PCSSR) graph construction approach for semi-supervised HSI 

classification, which incorporates the probabilistic class structure 

of the data into SR to make the representation coefficients to pre- 

serve the class structure of the data samples, and thus enhances 

the discriminability of graph. 

While the above SR-based graphs have shown impressive per- 

formance on semi-supervised classification tasks, they all fail to 

consider the rich spatial information of the HSI. As we all know, 

spatially neighboring pixels in an HSI are likely to belong to the 

same class [40] , and this assumption has been successfully applied 

in many problems [41–46] . However, these methods only consider 

the hypothesis of spatial consistency, but not utilize the dissim- 

ilarity relationship among samples. In the SR procedure, SR may 

select samples with different classes to represent target samples 

in the presence of dependent subspaces or data errors [47] , mak- 

ing representation less discriminative. Therefore, in the graph con- 

struction, not only do we expect the consistency of representation 

coefficients of the samples in the spatial neighborhood, but also 

hope to penalize the samples with different class distribution (i.e, 

assigning smaller weights), so that the learned graph is more in- 

formative and discriminative. 

Inspired by the above insights, in this paper, we present a novel 

graph construction method called spatial and class structure con- 

strained sparse representation (SCSSR) approach for graph-based 

SSL. Specifically, spatial information has been incorporated into SR 

model via the graph Laplacian regularization, it assumes that the 

spatial neighbors have similar representation coefficients and thus 

obtain a more accurate coefficient matrix. On the other hand, pre- 

vious work [15] has shown that probabilistic class structure can 

facilitate the SR and improve discriminability of graph, so we also 

incorporate probabilistic class structure into SR model to penalize 

the samples with different class distribution, and thus to further 

improve the performance of the graph. The SCSSR objective func- 

tion can be solved by the recently developed alternating direction 

methods with adaptive penalty (ADMAP) algorithm [48] . The ex- 

perimental results on six hyperspectral data sets show that our SC- 

SSR method outperforms the state of the art algorithms. 

We organize the rest of the paper as follows: In Section 2 , we 

will introduce the related works, including the work related to 

the graph-based SSL algorithm, the work related to SR graph. In 

Section 3 we will detail the construction of our SCSSR graph. Ex- 

perimental results and analysis will be discussed in Section 4 . We 

will conclude our work and propose future work in Section 5 . 

2. Related works 

In this section, we review the following two parts: graph-based 

semi-supervised classification framework used in the paper, and 

the sparse representation-based graphs. 

2.1. Graph-based semi-supervised classification framework 

Denote Y = [ Y l , Y u ] 
T ∈ R n ×c as a initial label matrix, where l and 

u represent the number of labeled samples and unlabeled sam- 

ples, respectively, Y i j = 1 if the label of sample x i belongs to class j 

for j ∈ { 1 , 2 , . . . , c } and Y i j = 0 otherwise, c denotes the number of 

classes. Generally, Graph-based SSL methods obtain the final label 

matrix F = [ F l , F u ] 
T ∈ R n ×c by minimizing following problems [6] : 

min 

F ∈ R n ×c 
T r( F T L W 

F ) s.t F l = Y l (1) 

where L W 

= D W 

− W is the graph Laplacian matrix, in which D W 

is 

the corresponding diagonal degree matrix with D W ii = 

∑ 

j W i j , W 

is learned affinity matrix. 

By partitioning the matrix L W 

into four blocks based on labeled 

and unlabeled nodes, we can obtain the closed-form solution of 

problem (1) : 

F u = −L W uu 

−1 L W ul 
Y l (2) 

2.2. Sparse representation-based graphs 

The performance of the graph-based SSL depends heavily on 

the affinity matrix, and recent years have witnessed significant 

advances in graph construction. Since SR-based methods have 

shown impressive performance on semi-supervised HSI classifica- 

tion tasks, we focus our discussion on recent SR-based graphs. 

Given a set of n samples X = [ x 1 , x 2 , . . . , x n ] ∈ R d×n . SR seeks 

the sparsest representation among all samples that encoding each 

sample as the linear combination of the samples themselves. It 

proposes to solve the following � 1 optimization problem [27,28] : 

W 

= argmin ‖ 

W ‖ 1 

s.t. X = XW , diag( W ) = 0 , W ≥ 0 

(3) 

where W = [ w 1 , w 2 , . . . , w n ] is coefficient matrix with each 

w i being the representation coefficients of x i . The constraint 

diag( W ) = 0 eliminates the trivial solution of self-representation. 

The coefficients reflect the relationship among data samples, there 

existing an edge between x i and x j when w ij � = 0, and the edge 

weight is w ij . 

In order to handle with noise or corrupted data, [30] extends 

the above optimization problem to the following minimization 

problem: 
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