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a b s t r a c t 

Distance metric learning has motivated a great deal of research over the last years due to its robustness 

for many pattern recognition problems. In this paper, we develop a supervised distance metric learning 

method that aims to improve the performance of nearest-neighbor classification. Our method is inspired 

by the large-margin principle, resulting in an objective function based on a sum of margin violations to 

be minimized. Due to the use of the ramp loss function, the corresponding objective function is noncon- 

vex, making it more challenging. To overcome this limitation, we formulate our distance metric learning 

problem as an instance of difference of convex functions (DC) programming. This allows us to design a 

more robust method than when using standard optimization techniques. The effectiveness of this method 

is empirically demonstrated through extensive experiments on several standard benchmark data sets. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recent advances in distance metric learning have demonstrated 

a promising approach to compute more effective distance met- 

rics (or, equivalently, similarity measures) for a given problem, 

provided that some constraints or class labels are available [1,2] . 

The idea is to adjust distances between examples in order to 

improve the performance of a learning method. For instance, in 

nearest-neighbor classification, the distances between examples of 

the same class (i.e. similar examples) should be smaller than those 

between examples of different classes (i.e. dissimilar examples) [3] . 

One then hopes to obtain an appropriate distance metric that con- 

stitutes a good dissimilarity measure between examples. In a re- 

cent survey paper, Bellet et al. [2] gave an overview of distance 

metric learning methods and their applications according to dif- 

ferent criteria, such as learning paradigm, scalability, and form of 

the distance metric. On the other hand, a large number of dis- 

tance metric learning methods can be described in a unified frame- 

work proposed by Kulis [1] . Among different distance metric learn- 

ing methods, learning a Mahalanobis distance metric is one of the 

most successful and well-studied frameworks due to its simplic- 

ity and flexibility. One can see the Mahalanobis distance metric as 

a generalization of the Euclidean distance metric, which allows for 

rotation and scaling of features. Mahalanobis distance metric learn- 
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ing has been widely used in different contexts, such as classifica- 

tion [3–6] , regression [7] , subspace learning [8,9] , semi-supervised 

clustering [10,11] , unsupervised learning [12] , learning to rank [13] , 

etc. 

Mahalanobis distance metric learning can be formulated within 

a convex optimization framework, which enjoys significant advan- 

tages in that the convexity guarantees to reach the global op- 

timum and is not sensitive to initial conditions. A large num- 

ber of optimization methods have been proposed to deal with 

convex optimization problems [14] . In particular, convex distance 

metric learning methods are often cast as solving semidefinite 

programs, therefore, standard semidefinite programming solvers 

can be used. In order to make the problem more tractable in 

large-scale settings, Weinberger and Saul [3] developed an effi- 

cient subgradient descent method based on the active set tech- 

niques. Davis et al. [15] introduced an iterative Bregman pro- 

jection method to avoid the projection of the Mahalanobis ma- 

trix onto the cone of symmetric positive semidefinite (PSD) ma- 

trices. Shen et al. [16] proposed a boosting-based method that 

learns a linear combination of trace-one rank-one matrices. Re- 

cently, Atzmon et al. [17] suggested an efficient solver based on 

the block-coordinate descent method to avoid the projection and 

computation of full gradients. Other methods such as the Frank–

Wolfe [18] and the projected gradient descent [19] methods have 

also been employed in the context of distance metric learning. 

Convex optimization has become very popular in the pattern 

recognition community over the last few decades, because of its 

empirical performance and because it facilitates a deeper mathe- 
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matical analysis. Unfortunately, in many practical settings, convex- 

ity is not always guaranteed, and one has to resort to nonconvex 

optimization methods [20] . Various researchers [21–23] have ar- 

gued that using nonconvex loss functions to approximate the mis- 

classification rate can yield a better performance than using con- 

vex loss alternatives such as the hinge loss and the exponential 

loss. Recent research in this direction has provided a number of 

nonconvex functions in order to alleviate the limitation of convex 

functions. Shen et al. [24] and Liu and Shen [25] proposed a �- 

learning framework that replaces the hinge loss function in Sup- 

port Vector Machines (SVMs) by a nonconvex �-loss function. In 

a similar variant of the �-loss function, Collobert et al. [20] and 

Ertekin et al. [26] introduced the ramp loss function, which gives 

a constant penalty for large losses. Both the �-loss and ramp loss 

functions have been shown to be effective in practice. Therefore, 

it is important to investigate the use of nonconvex loss functions 

in the context of distance metric learning. In particular, we pay at- 

tention to the ramp loss function, since it can be easily written 

as a difference of convex functions (DC). Consequently, an effective 

method for DC programming can be applied to solve the problem. 

To the best of our knowledge, the method presented in this pa- 

per is the first distance metric learning method that exploits the 

benefits of DC programming. 

Due to the simplicity and effectiveness, our paper focuses on 

improving the performance of nearest-neighbor classification. It is 

well known that the misclassification error rate of the nearest- 

neighbor classifier converges asymptotically to at most twice the 

Bayes error rate [27] , however, it is extremely sensitive to noise. In 

order to overcome the latter drawback, we develop a distance met- 

ric learning method making the nearest-neighbor classifier more 

robust to outliers. In short, our main contributions are summarized 

as follows: 

1. A distance metric learning framework is proposed to minimize 

the misclassification rate of the nearest-neighbor classifier. Par- 

ticularly, our method is inspired by the success of the large- 

margin principle [28] . Due to the use of the ramp loss function, 

our objective function for margin maximization has a strong 

ability to avoid the influence of outliers. 

2. Since the objective function can be decomposed into a DC pro- 

gram, a DC algorithm (DCA) [29] is adopted to solve this prob- 

lem. Our method iteratively solves a sequence of convex sub- 

problems. We refer to the proposed method as Distance Metric 

Learning using DC programming (DML-dc). 

3. We show that the generalization error analysis of the proposed 

approach has an important theoretical implication in explain- 

ing that minimizing the objective function may improve the 

generalization performance of nearest-neighbor classification. 

In particular, the generalization performance is guaranteed via 

the fat-shattering dimension of Lipschitz classifiers through the 

combination of a large margin and a low-rank Mahalanobis ma- 

trix. 

The remainder of this paper is organized as follows. 

Section 2 gives some formal definitions and notations that 

will be used throughout this paper. Section 3 briefly reviews 

some existing approaches that are closely related to our work. 

Section 4 presents our distance metric learning formulation and 

the corresponding DCA algorithm. Subsequently, Section 5 pro- 

vides the generalization error of the proposed approach using 

the large-margin criterion. Experimental results are discussed in 

Section 6 , followed by some concluding remarks in Section 7 . 

2. Preliminaries 

We introduce some notations and background that will be used 

in the proposed approach. 

2.1. Notations 

For the sake of convenience, we use the following notations. 

Matrices are denoted by bold-face uppercase letters; the identity 

matrix is denoted by I . Vectors are denoted by bold-face lower- 

case letters. Sets are denoted by calligraphic uppercase letters. The 

Frobenius norm of a matrix M is denoted by ‖ M ‖ F . The cone of 

PSD matrices M � 0 in R 

D ×D is denoted by S 
D + . The inner product 

between two matrices A and B is denoted by 〈 A , B 〉 = tr ( A 

� B ) , 

where tr(.) denotes the trace of a matrix. The distance between 

a point x and a finite set S is defined as d( x , S) = min 

{
d( x , x i ) | 

x i ∈ S 
}

for a given distance metric d . 

We will consider the standard supervised classification prob- 

lem. The set of training examples is denoted by D = { ( x i , y i ) | i ∈ 

{ 1 , . . . , n }} ⊂ X × Y, where X ⊆ R 

D denotes the set of feature vec- 

tors and Y denotes the set of class labels. Let us introduce the def- 

initions of hit examples and miss examples. 

Definition 1 (Hit examples) . Let x i be an example in X . The hit 

examples of x i are the elements of the set H i consisting of the 

examples in X \ { x i } that share the same class label with x i , i.e. 

H i = 

{
x j | j ∈ { 1 , . . . , n } , j 
 = i, y j = y i 

}
. 

Definition 2 (Miss examples) . Let x i be an example in X . The miss 

examples of x i are the elements of the set M i consisting of the 

examples in X that do not share the same class label with x i , i.e. 

M i = 

{
x j | j ∈ { 1 , . . . , n } , y j 
 = y i 

}
. 

Next, we briefly discuss the main idea of using margins in ma- 

chine learning, which motivates our approach. 

2.2. Margins 

To evaluate the performance of a classifier, it does not suffice 

to consider the training error, but it is also necessary to consider 

the confidence of the predictions made by the classifier. The mar- 

gin is one of the geometric measures for evaluating this confi- 

dence [30] . It provides theoretical generalization bounds on the 

effectiveness of a classifier, i.e. the higher the confidence is, the 

lower generalization error the classifier obtains. Many machine 

learning algorithms have been analyzed using margin concepts, 

such as SVMs [28] and AdaBoost [31] . 

Given a distance metric d , Crammer et al. [30] define the mar- 

gin by which a labeled example x i is classified correctly as 

φ( x i ) = d 
(
x i , NM ( x i ) 

)
− d 

(
x i , NH ( x i ) 

)
, (1) 

where NM( x i ) and NH( x i ) are the elements of M i and H i that are 

closest to x i , called nearest miss (NM) and nearest hit (NH), re- 

spectively. This margin was originally defined using the Euclidean 

distance metric for feature selection purposes. The intuition behind 

this formulation is that it measures how much x i can travel in the 

input space before being misclassified. This margin definition is 

also adopted implicitly in the well-known RELIEF algorithm [32] . 

RELIEF predefines the NH and the NM in the original input space 

using the Euclidean distance metric, and it leads to a convex opti- 

mization problem. The major issue with RELIEF is that the NH and 

the NM in the original input space are not always the same in the 

transformed space. 

3. Related work 

Our method is closely related to feature selection methods such 

as RELIEF [32] , I-RELIEF [33] , and SIMBA [34] . The reader is referred 

to [35] for a more detailed discussion about this family of algo- 

rithms in a unified framework. These methods are developed for 

selecting a set of features that capture the relevant properties of 
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