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a b s t r a c t 

Clustering is the process of finding underlying group structures in data. Although mixture model-based 

clustering is firmly established in the multivariate case, there is a relative paucity of work on matrix 

variate distributions and none for clustering with mixtures of skewed matrix variate distributions. Four 

finite mixtures of skewed matrix variate distributions are considered. Parameter estimation is carried out 

using an expectation-conditional maximization algorithm, and both simulated and real data are used for 

illustration. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the years, there has been increased interest in the applica- 

tions involving three-way (matrix variate) data. Although there are 

countless examples of clustering for multivariate distributions us- 

ing finite mixture models, as discussed in Section 2 , there is very 

little work for matrix variate distributions. Moreover, the examples 

in the literature deal exclusively with symmetric (non-skewed) 

matrix variate distributions such as the matrix variate normal and 

the matrix variate t distributions. 

There are many different areas of application for matrix vari- 

ate distributions. One area is multivariate longitudinal data, where 

multiple variables are measured over time [e.g., [2] ]. In this case, 

each row of a matrix would correspond to a time point and the 

columns would represent each of the variables. Furthermore, the 

two scale matrices, a defining characteristic of matrix variate dis- 

tributions, allow for simultaneous modelling of the inter-variable 

covariances as well as the temporal covariances. A second applica- 

tion, considered herein, is image recognition. In this case, an image 

is analyzed as an n × p pixel intensity matrix. Herein, a finite mix- 

ture of four different skewed matrix distributions, the matrix vari- 

ate skew- t , generalized hyperbolic, variance-gamma and normal in- 

verse Gaussian (NIG) distributions are considered. These mixture 
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models are illustrated for both clustering (unsupervised classifica- 

tion) and semi-supervised classification using both simulated and 

real data. 

2. Background 

2.1. Model-based clustering and mixture models 

Clustering and classification look at finding and analyzing un- 

derlying group structures in data. One common method used 

for clustering is model-based, and generally makes use of a G - 

component finite mixture model. A multivariate random variable 

X from a finite mixture model has density 

f (x | ϑ) = 

G ∑ 

g=1 

πg f g (x | θg ) , 

where ϑ = 

(
π1 , π2 , . . . , πG , θ1 , θ2 , . . . , θG 

)
, f g ( · ) is the g th compo- 

nent density, and π g > 0 is the g th mixing proportion such that ∑ G 
i =1 πg = 1 . McNicholas [37] traces the association between clus- 

tering and mixture models back to Tiedeman [55] , and the earliest 

use of a finite mixture model for clustering can be found in Wolfe 

[61] , who uses a Gaussian mixture model. Other early work in this 

area can be found in [6,51] , and a recent review of model-based 

clustering is given by McNicholas [38] . 

Although the Gaussian mixture model is well-established for 

clustering, largely due to its mathematical tractability, quite some 

work has been done in the area of non-Gaussian mixtures. For 

example, some work has been done using symmetric component 

densities that parameterize concentration (tail weight), e.g., the 

t distribution [3,4,33,47] and the power exponential distribution 

[14] . There has also been work on mixtures for discrete data [e.g., 
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[9,27] ] as well as several examples of mixtures of skewed distri- 

butions such as the NIG distribution [28,54] , the skew- t distribu- 

tion [30–32,43–45,57,58] , the shifted asymmetric Laplace distribu- 

tion [18,42] , the variance-gamma distribution [40] , the generalized 

hyperbolic distribution [10] , and others [e.g., [17,19] ]. 

Recently, there has been an interest in the mixtures of matrix 

variate distributions, e.g., Anderlucci and Viroli [2] consider mul- 

tivariate longitudinal data with the matrix variate normal distri- 

bution and Do ̆gru et al. [15] consider a finite mixture of matrix 

variate t distributions. 

2.2. Matrix variate distributions 

Three-way data such as multivariate longitudinal data or 

greyscale image data can be easily modelled using a matrix variate 

distribution. There are many examples of such distributions pre- 

sented in the literature, the most notable being the matrix variate 

normal distribution. In Section 2.1 , X was used in the typical way 

to denote a multivariate random variable and x was used to de- 

note its realization. Hereafter, X is used to denote a realization of 

a random matrix X . An n × p random matrix X follows an n × p 

matrix variate normal distribution with location parameter M and 

scale matrices � and � of dimensions n × n and p × p , respectively, 

denoted by , N n ×p (M , �, �) if the density of X can be written as 

f (X | M , �, �) 

= 

1 

(2 π) 
np 
2 | �| p 2 | �| n 2 

exp 

{ 
−1 

2 

tr 
(
�−1 (X − M ) �−1 (X − M ) ′ 

)} 
. 

(1) 

A well known property of the matrix variate normal distribution, 

see [25] , is 

X ∼ N n ×p (M , �, �) ⇐⇒ vec (X ) ∼ N np ( vec (M ) , � � �) , (2) 

where N np (·) is the multivariate normal density with dimension 

np , vec( · ) is the vectorization operator, and � is the Kronecker 

product. 

The matrix variate normal distribution has many elegant math- 

ematical properties that have made it so popular, e.g., [56] uses a 

mixture of matrix variate normal distributions for clustering. How- 

ever, there are non-normal examples such as the Wishart distribu- 

tion [60] and the skew-normal distribution, e.g., [13,16,25] . More 

information on matrix variate distributions can be found in [24] . 

2.3. The generalized inverse Gaussian distribution 

The generalized inverse Gaussian distribution has two different 

parameterizations, both of which will be useful. A random variable 

Y has a generalized inverse Gaussian (GIG) distribution parameter- 

ized by a, b and λ, denoted by GIG( a, b, λ), if its probability density 

function can be written as 

f (y | a, b, λ) = 

( a/b ) 
λ
2 y λ−1 

2 K λ( 
√ 

ab ) 
exp 

{
−ay + b/y 

2 

}
, 

where 

K λ(u ) = 

1 

2 

∫ ∞ 

0 

y λ−1 exp 

{ 
−u 

2 

(
y + 

1 

y 

)} 
dy 

is the modified Bessel function of the third kind with index λ. 

Expectations of some functions of a GIG random variable have a 

mathematically tractable form, e.g.: 

E (Y ) = 

√ 

b 

a 

K λ+1 ( 
√ 

ab ) 

K λ( 
√ 

ab ) 
, (3) 

E ( 1 /Y ) = 

√ 

a 

b 

K λ+1 ( 
√ 

ab ) 

K λ( 
√ 

ab ) 
− 2 λ

b 
, (4) 

E ( log Y ) = log 

( √ 

b 

a 

) 

+ 

1 

K λ( 
√ 

ab ) 

∂ 

∂λ
K λ( 
√ 

ab ) . (5) 

Although this parameterization of the GIG distribution will be 

useful for parameter estimation, for the purposes of deriving the 

density of the matrix variate generalized hyperbolic distribution, it 

is more useful to take the parameterization 

g(y | ω , η, λ) = 

( w/η) 
λ−1 

2 ηK λ(ω ) 
exp 

{ 
−ω 

2 

(
w 

η
+ 

η

w 

)} 
, (6) 

where ω = 

√ 

ab and η = 

√ 

a/b . For notational clarity, we will de- 

note the parameterization given in (6) by I( ω, η, λ). 

2.4. Skewed matrix variate distributions 

The work of Gallaugher and McNicholas [20,21] presents a to- 

tal of four skewed matrix variate distributions, the matrix variate 

skew- t , generalized hyperbolic, variance-gamma and NIG distribu- 

tions. Each of these distributions is derived from a matrix variate 

normal variance-mean mixture. In this representation, the random 

matrix X has the representation 

X = M + W A + 

√ 

W V , (7) 

where M and A are n × p matrices representing the location and 

skewness respectively, V ∼ N n ×p ( 0 , �, �) , and W > 0 is a random 

variable with density h ( w | θ). 

In [20] , the matrix variate skew- t distribution, with ν de- 

grees of freedom, is shown to arise as a special case of (7) with 

W 

ST ∼ IGamma( ν/2, ν/2), where IGamma( · ) denotes the inverse 

Gamma distribution with density 

f (y | a, b) = 

b a 

�(a ) 
y −a −1 exp 

{
−b 

y 

}
. 

The resulting density of X is 

f MVST (X | ϑ) 

= 

2 

(
ν
2 

) ν
2 exp 

{
tr (�−1 (X − M ) �−1 A 

′ ) 
}

(2 π) 
np 
2 | �| p 2 | �| n 2 �( ν

2 
) 

(
δ(X ; M , �, �) + ν

ρ(A , �, �) 

)− ν+ np 
4 

× K − ν+ np 
2 

(√ 

[ ρ(A , �, �) ] [ δ(X ; M , �, �) + ν] 

)
, 

where 

δ(X ; M , �, �) = tr (�−1 (X − M ) �−1 (X − M ) ′ ) , 
ρ(A ;�, �) = tr (�−1 A�−1 A 

′ ) 

and ν > 0. For notational clarity, this distribution will be denoted 

by MVST( M, A, �, �, ν). 

In [21] , one of the distributions considered is a matrix variate 

generalized hyperbolic distribution. This again is the result of a 

special case of (7) with W 

GH ∼ I( ω, 1, λ). This distribution will be 

denoted by MVGH( M, A, �, �, λ, ω), and the density is 

f MVGH (X | ϑ) 

= 

exp 

{
tr (�−1 (X − M ) �−1 A 

′ ) 
}

(2 π) 
np 
2 | �| p 2 | �| n 2 K λ(ω) 

(
δ(X ; M ,�,�) + ω 

ρ(A , �, �) + ω 

) ( λ− np 
2 ) 

2 

× K ( λ−np / 2 ) 

(√ 

[ ρ(A , �, �) + ω ] [ δ(X ; M , �, �) + ω ] 

)
, 

where λ ∈ R and ω > 0. 
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