
Pattern Recognition 80 (2018) 210–224

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

A novel hierarchical-based framework for upper bound computation

of graph edit distance

Karam Gouda

a , b , ∗, Mona Arafa

a , Toon Calders b , c

a Faculty of Computers & Informatics, Benha University, Egypt
b Department of Computer & Decision Engineering, Université Libre de Bruxelles, Belgium

c Department of Mathematics & Computer Sciences, University of Antwerp, Belgium

a r t i c l e i n f o

Article history:

Received 12 May 2017

Revised 18 November 2017

Accepted 20 March 2018

Available online 21 March 2018

Keywords:

Graph similarity

Graph edit distance

Upper bound

a b s t r a c t

Graph similarity is an important notion with many applications. Graph edit distance is one of the most

flexible graph similarity measure available. The main problem with this measure is that in practice it can

only be computed for small graphs due to its exponential time complexity. The present paper is con-

cerned with efficient solutions with high quality approximation of graph edit distance. In particular, we

present a novel upper bound computation framework for graph edit distance. It is based on breadth-

first hierarchical views of the graphs and a novel hierarchical traversing and matching method to build

a graph mapping. The main advantage of this framework is that it combines map construction with edit

counting in easy and straightforward manner. It also allows to compare the graphs from different hier-

archical views to improve the bound. Furthermore, to avoid the complexity of multi-view comparisons

and preserve distance accuracy, two new view-selection methods, based on the vertex and edge star

structures, are introduced to scale the computations. Contrasting our approach with the state-of-the-art

overestimation methods, experiments show that it delivers comparable upper bounds with over three or-

ders of magnitude speedup on real data graphs. Experiments also show that this approach improves the

classification accuracy of the KNN classifiers by over 15 percent when compared with the state-of-the-art

overestimation methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Powerful data structures such as graphs are currently used to

represent complex entities and their relationships in many applica-

tion areas. These areas include Pattern Recognition [1] , Social Net-

works [2] , Software Engineering [3] , Bio-informatics [4] , Semantic

Web [5] , Chem-informatics [6] , etc. Yet, the expressive power and

flexibility of the graph data model comes at the cost of high com-

putational complexity of many basic operations. Graph edit dis-

tance is one of such operations which has recently drawn lots

of interest in the research community. Given two labeled graphs,

graph edit distance measures the minimum cost of graph edits

to be performed on one of them to get the other. A graph edit

operation is usually one of vertex insertion/deletion, edge inser-

tion/deletion or a change of a vertex’/edge’s label in the graph.

∗ Corresponding author at: Department of Computer & Decision Engineering, Uni-

versité Libre de Bruxelles, Belgium.

E-mail addresses: karam.gouda@fci.bu.edu.eg , karam.gouda@ulb.ac.be (K. Gouda),

mona.arafa@fci.bu.edu.eg (M. Arafa), toon.calders@ulb.ac.be (T. Calders).

Due to the rich information provided by its associated edit se-

quence as well as its ability to cope with any kind of graph struc-

tures and labeling scheme, graph edit distance is considered as one

of the most flexible graph similarity measure available for labeled

graphs. Today, graph edit similarity plays a significant role in man-

aging graph data [7–10] , and is employed in a variety of analy-

sis tasks such as graph classification and clustering [11,12] , object

recognition in computer vision [1] , etc. Unfortunately, the main

problem with this measure is that it can only be computed for

small graphs due to its exponential time complexity [13–16] . Com-

puting graph edit distance is known to be an NP-hard problem [8] .

In practice, to be able to compare large graphs, algorithms seek-

ing suboptimal solutions have been proposed [1,8,12,17–24] . Most

of these solutions deliver bounded values.

Many recently proposed interesting upper bounds of graph edit

distance, as well as the upper bound introduced in this paper, are

obtained using graph mapping methods. Given a graph mapping

one can define a graph editing and vice versa. The intuition behind

these methods is that the better the mapping between graphs, the

better the upper bound on their edit distance. In [8,25] a graph

mapping approach is introduced. The idea at the heart of this ap-

https://doi.org/10.1016/j.patcog.2018.03.019

0031-3203/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.patcog.2018.03.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.03.019&domain=pdf
mailto:karam.gouda@fci.bu.edu.eg
mailto:karam.gouda@ulb.ac.be
mailto:mona.arafa@fci.bu.edu.eg
mailto:toon.calders@ulb.ac.be
https://doi.org/10.1016/j.patcog.2018.03.019

K. Gouda et al. / Pattern Recognition 80 (2018) 210–224 211

proach is based on the observation that matching vertices with

similar neighborhoods often yields graph mapping with low edit

cost. In this approach, dummy vertices are first inserted into the

smaller graph to equalize the number of vertices at both graphs.

A cost matrix between the vertices of the two graphs is then

built, where each entry holds the matching edit cost between the

neighbourhoods of the corresponding vertices. Using this matrix, a

cubic-time bipartite assignment algorithm such as the Hungarian

Algorithm [26] is used to optimally match the vertices and build a

vertex map. Finally, the edit cost of this map is calculated and re-

turned as an upper bound of graph edit distance. The main prob-

lem with this approach, however, is that the pairwise vertex cost

considers the graph structure only locally. Hence, in cases where

neighborhoods do not differentiate the vertices, such as in unla-

beled graphs, this approach performs poorly. Recent improvements

consider modifying the initial graph mapping by deploying addi-

tional search strategies in a post processing phase. For example, an

exhaustive vertex swapping procedure is used in [8] , a greedy ver-

tex swapping is used in [27,28] , and a randomized vertex swap-

ping based on simulated annealing is used in [24] . Despite the

computation overhead of these post-processing steps (from O (| V | 2)

to O (| V | 6) additional time), the resulting graph mappings are still

prone to local optima, and depend on the initialization. On the

other hand, many attempts have been made towards improving the

efficiency of the basic vertex assignment. In [22] , the cubic-time

complexity is avoided by using a quadratic-time greedy solution

when computing the vertex assignment. Recently, in [23] , a new

quadratic-time approach is developed to reduce the loss in accu-

racy of the previous greedy vertex assignment by allowing bidirec-

tional assignments between corresponding vertices.

In this paper, we presents a novel linear-time upper bound

computation framework for graph edit distance, named B readth

F irst S earch T ree based E dit D istance (BFST_ED), which pursues

a completely different graph mapping construction strategy. The

basic idea of our approach is to picture the graphs to be com-

pared as hierarchical structures. This view facilitates comparison

and graph mapping construction. BFST_ED adopts the breadth-

first hierarchical view of graphs, where each graph is represented

as a breadth first search tree (BFST for short) and a set of backward

edges. A concurrent pre-order traversing and matching method of

the corresponding BFSTs is then developed in order to build a ver-

tex map between graphs. Using this map, the edit costs on back-

ward edges are calculated and then added to the tree mapping

edit cost to produce an upper bound of graph edit distance. The

BFSTs mapping method is improved as follows: First, instead of

matching the vertices in a strict preorder traversal of BFSTs, it is

allowed for a vertex to find a suitable match among different op-

tions by comparing the children of both the visited vertex and its

match before visiting any of these children in the preorder. Sec-

ond, the idea of spare trees is introduced to reduce the number

of insertions/deletions incurred by the mapping, and a local bipar-

tite matching based on lookahead is used to enhance the vertex

matching process.

This novel framework allows to explore a quadratic space of

graph mappings to improve the upper bound, where for each two

corresponding vertices it is possible to run the BFSTs mapping

method on the distinct hierarchical views imposed by these ver-

tices. To avoid the complexity of multi-view comparisons and pre-

serve distance accuracy, two new view-selection methods are in-

troduced to scale the computations. These methods are based on

the vertex and edge star structures [8,16,25] and their edit simi-

larities. Another solution would be the possibility of carrying out

view comparisons in parallel, a feature which is not offered by any

of the state-of-the-art distance approximation methods. Contrast-

ing our approach with the state-of-the-art overestimation meth-

ods, experiments show that it delivers comparable upper bounds

with over three orders of magnitude speedup on real data graphs.

Experiments also show that this approach improves the classifica-

tion accuracy of the KNN classifiers by over 15 percent when com-

pared with the state-of-the-art overestimation methods. A prelim-

inary version of this paper is introduced in [29] . The work in the

current paper has significantly extended the idea with respect to

the underlying methodology and the experimental evaluation.

The remainder of this paper is organized as follows. Prelimi-

nary concepts are presented in Section 2 . Section 3 presents the

framework at higher level, the different BFSTs matching methods,

and finally the complexity analysis. Section 4 is devoted to the up-

per bound improvements. The experimental results are reported in

Section 5 . Section 6 concludes the paper.

2. Preliminaries

2.1. Graphs

Let � be a set of discrete-valued labels. A labeled, undirected

graph G is a triple G = (V, E, l) , where V = { v 1 , v 2 , . . . , v | V | } is a set

of vertices, E = { e 1 , . . . , e | E| } ⊂ V × V is a set of undirected edges,

and l is a labeling function l: V ∪ E → �, assigning for each vertex

v ∈ V or edge e ∈ E an alphabet character l (v) ∈ � or l (e) ∈ �. | V | and

| E | are called the order and size of G , respectively. For each vertex

u ∈ V , the neighborhood of u in G is given as N(u) = { v : (u, v) ∈ E} ,
and the degree of u in G as deg(u) = | N(u) | . A labeled, undirected

graph G is said to be connected if each pair of vertices u i , u j ∈

G, i � = j , are directly or indirectly connected. An undirected graph

is simple if it neither contains self-loops nor multiple edges. This

paper focuses on simple and connected graphs with only labeled

vertices. An extension to edge-labeled graphs is straightforward.

A graph G = (V, E, l) is a subgraph of another graph G

′ = (V

′ ,
E ′ , l ′) (or G

′ is a supergraph of G), denoted G ⊆ G

′ , if there exists

a subgraph isomorphism from G to G

′ . We may simply say that G

′
contains G .

Definition 1 (Sub-)graph isomorphism . A subgraph isomorphism

is an injective function f: V → V

′ , such that (1) ∀ u ∈ V, l (u) =

l ′ (f (u)). (2) ∀ (u, v) ∈ E , (f (u), f (v)) ∈ E ′ . If G ⊆G

′ and G

′ ⊆G , then we

say that G and G

′ are graph isomorphic to each other, denoted by

G

∼=

G

′ .

Definition 2 (Maximum) common sub-graph . Given two graphs G 1

and G 2 . A graph G = (V, E) is said to be a common sub-graph of

G 1 and G 2 if ∃ H 1 ⊆G 1 and H 2 ⊆G 2 such that G

∼=

H 1
∼=

H 2 . A common

sub-graph G is a maximum common edge (resp. vertex) sub-graph

if there exists no other common sub-graph G

′ = (V ′ , E ′) such that

| E ′ | > | E | (resp. | V

′ | > | V |).

2.2. Graph editing and graph edit distance

A graph G can be transformed into another graph by elemen-

tary edit operations consisting of inserting or deleting a vertex or

an edge, or changing a vertex label. Notice that a vertex can be

deleted only if its incident edges have been previously deleted.

Each elementary edit operation p is associated to a application-

dependent cost c (p), measuring the strength of the corresponding

operation. Given two graphs G 1 and G 2 , the sequence of edit op-

erations performed on one of them to get the other is called a

graph editing . Formally, let p i be an edit operation, a graph edit-

ing Gedit = 〈 p i 〉 k i =1
is a sequence of edit operations 〈 p 1 , p 2 , . . . , p k 〉

that transform G 1 into G 2 , that is, Gedit(G 1) = G 1 →

p 1 G

1 →

p 2

G

2 . . . →

p k G

k ∼=

G 2 . The cost of a graph editing is the sum of its

edit operation’s costs, i.e., C (G 1 , G 2 , Gedit) =

∑ k
i =1 c(p i) .

Given two graphs G 1 and G 2 , clearly, there could be multiple

edit sequences that turn G 1 into G 2 . An optimal graph editing is

Download English Version:

https://daneshyari.com/en/article/6938983

Download Persian Version:

https://daneshyari.com/article/6938983

Daneshyari.com

https://daneshyari.com/en/article/6938983
https://daneshyari.com/article/6938983
https://daneshyari.com

