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a b s t r a c t 

Least squares support vector machine (LS-SVM) is a popular hyperplane-based classifier and has attracted 

many attentions. However, it may suffer from singularity or ill-condition issue for the small sample size 

(SSS) problem where the sample size is much smaller than the number of features of a data set. Feature 

selection is an effective way to solve this problem. Motivated by this, in the paper, we propose a sparse 

L q -norm least squares support vector machine ( L q -norm LS-SVM) with 0 < q < 1, where feature selection 

and prediction are performed simultaneously. Different from traditional LS-SVM, our L q -norm LS-SVM 

minimizes the L q -norm of weight and releases the least squares problem in primal space, resulting in 

that feature selection can be achieved effectively and small enough number of features can be selected 

by adjusting the parameters. Furthermore, our L q -norm LS-SVM can be solved by an efficient iterative 

algorithm, which is proved to be convergent to a global optimal solution under some assumptions on the 

sparsity. The effectiveness of the proposed L q -norm LS-SVM is validated via theoretical analysis as well 

as some illustrative numerical experiments. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In pattern recognition, we are generally given a set of samples 

of input vectors along with corresponding class labels, and the task 

is to find a deterministic function that best represents the relation 

between input vectors and class labels. As a powerful tool, support 

vector machine (SVM) [1,2] has been successfully applied and stud- 

ied from various aspects [3–7] . Specifically, in order to reduce the 

time complexity, least squares support vector machine (LS-SVM) 

[8,9] was proposed, which attempts to minimize the least squares 

error on the training samples while simultaneously to maximize 

the margin between two classes. Extensive empirical comparisons 

show that LS-SVM is able to obtain good performance on many 

problems with a fast training speed [10–14] . 

However, LS-SVM is not suitable for small sample size (SSS) 

problem, where the sample size is smaller than the number of fea- 

tures. The reason is that LS-SVM lacks the ability of feature selec- 

tion while feature selection is an effective way. The aim of this pa- 
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per is to present a modified version of LS-SVM with rather strong 

feature selection ability. 

In general, there are two ways to perform feature selection 

for SVM classifiers. One way is to conduct a separate feature se- 

lection procedure before classification, such as univariate ranking 

[15] and recursive feature elimination [16] . Another way is to con- 

duct feature selection and classification simultaneously. The lat- 

ter way is usually preferable since better performance could be 

achieved, as pointed by Fan and Li [17,18] . This statement has been 

confirmed and demonstrated by subsequently published papers in 

recent years [19–21] . For example, L 1 -norm SVM [24] with LP for- 

mulation was proposed to accomplish feature selection and pre- 

diction at the same time, where the standard LP packages could 

be used [25] . As an improvement of L 1 -norm SVM, Zou [26] con- 

sidered the hybrid SVM that penalizes the empirical hinge loss by 

the adaptively weighted L 1 -norm function, where the weights were 

computed with the L 2 -norm SVM. Inspired by L 1 -norm SVM, the 

L q -norm SVM [20] (0 < q < 1) was proposed [21] . Numerical exper- 

imental results have shown that the employment of L q -norm not 

only makes the classifier more suitable for selecting features but 

also improves the classification accuracy [20–23] . 
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Encouraged by the successful use of L q -norm, we investigate the 

SSS problem and present a new sparse least squares support vec- 

tor machine, called L q -norm LS-SVM (0 < q < 1), where the sparse 

formulation is constructed in the primal space. Different from tra- 

ditional sparse least squares support vector machines in the dual 

space, our L q -norm LS-SVM obtains sparse solution in the primal 

space and is able to select useful features. Due to the use of L q - 

norm, L q -norm LS-SVM is hard to solve. Therefore, we introduce 

a regularized version of L q -norm problem and solved it by an it- 

erative algorithm with convergence to a global optimal solution. 

We summarize the main advantages of our L q -norm LS-SVM as fol- 

lows: 

(i) feature selection is achieved effectively by minimizing the 

L q -norm of weight in the primal least squares SVM for small 

sample size problem; 

(ii) the number of selected features in L q -norm LS-SVM can be 

adjusted by choosing the parameters according to the prac- 

tical requirement; 

(iii) the corresponding optimal problem of our L q -norm LS-SVM 

is solved by an efficient iterative algorithm, which is proved 

to be convergent to a global optimal solution under some 

assumptions; 

(iv) preliminary experimental results show its validity in both 

classification performance and feature selection ability. 

The paper is organized as follows. Section 2 briefly dwells on 

LS-SVM. Section 3 proposes an L q -norm minimization problem 

which is the foundation of our model. Our L q -norm LS-SVM and 

its theoretical analysis are presented in Section 4 . Section 5 makes 

some experimental comparisons between our L q -norm LS-SVM 

with LS-SVM, SVM, L 1 -norm SVM, and L q -norm SVM, and conclud- 

ing remarks are given in Section 6 . 

2. Least squares support vector machine 

Consider a binary classification problem in the n -dimensional 

real space R n . The set of training points is represented by T = 

{ (x i , y i ) | i = 1 , 2 , . . . , m } , where x i ∈ R n is the input and y i ∈ { +1 , −1 } 
is the corresponding output ( i = 1 , 2 , . . . , m ). We further organize 

the m inputs by a matrix X ∈ R m × n and the m outputs by a diago- 

nal matrix Y ∈ R m × m with its ( i , i )th element y i . 

Least squares support vector machine (LS-SVM) [8,9] searches 

for a hyperplane 

w 

� x + b = 0 , (1) 

that separates two classes. The optimization problem of LS-SVM is 

formulated as 

min 

w,b,ξ

1 
2 
|| w || 2 + 

γ
2 
ξ� ξ

s.t. Y (X w + eb) + ξ = e 
(2) 

by minimizing the structural risk and the sum-of-squares empirical 

risk, where || · || denotes the L 2 -norm, e = (1 , . . . , 1) T ∈ R m , γ > 0 is 

a parameter, and ξ ∈ R m is a slack variable. 

Introducing the Lagrange multiplier α = (α1 , . . . , αm 

) � for the 

equality constraint gives 

L (w, b, ξ , α) = 

1 
2 
‖ w ‖ 

2 + 

γ
2 
ξ� ξ − α� (Y (X w + eb) + ξ − e ) . (3) 

The optimality conditions are ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂L 

∂w 

= 0 �⇒ w = X 

� Y � α, 

∂L 

∂b 
= 0 �⇒ α� Ye = 0 , 

∂L 

∂ξ
= 0 �⇒ α = γ ξ, 

∂L 

∂α
= 0 �⇒ Y (X w + eb) + ξ − e = 0 . 

(4) 

This leads to the following linear system of equations [
e � Y 0 

Y X X 

� Y � + 

1 
γ I Ye 

][
α
b 

]
= 

[
0 

e 

]
. (5) 

After obtaining the solution α∗ and b ∗ of (5) and computing w 

∗ = 

X T Y T α∗, a new sample is classified as Class +1 or Class −1 accord- 

ing to whether the decision function, Class j = sgn (w 

∗� x + b ∗) = 

sgn (α∗T Y Xx + b ∗) , yields + 1 or −1 respectively. 

3. Sparse approximation of LS-SVM with L q -norm in primal 

space 

As mentioned before, LS-SVM lose sparsity. So, many comput- 

ing sparse solutions of LS-SVM has appeared in the literatures, e.g., 

[27–29] , but all of them are not concerned with feature selection 

as discussed in this paper because they are motivated by solving 

problem (5) , where the problem size of (5) is (m + 1) ∗ (m + 1) , 

and the feature selection can not be implemented for SSS problem 

at the same time. 

In contrast to solve the problem (5) , we consider to solve the 

primal problem of LSSVM. Firstly, we reformulate (2) as 

min 

w,b 
f (w, b) = 

1 
2 
|| w || 2 + 

γ
2 
‖ Y (X w + eb) − e ‖ 

2 . (6) 

Setting the gradient of (6) with respect to w and b to zero gives ⎧ ⎪ ⎨ ⎪ ⎩ 

∂ f 

∂w 

= 0 �⇒ w + γ X 

� Y � (Y (X w + eb) − e ) = 0 , 

∂ f 

∂b 
= 0 �⇒ γ e � Y � (Y (X w + eb) − e ) = 0 . 

(7) 

By arranging (7) in matrix form, we have [
X 

� X + 

1 
γ I X 

� e 
e � X e � e 

][
w 

b 

]
= 

[
X 

� 

e � 

]
Ye. (8) 

Let 

H = H(γ ) = 

[
X 

� X + 

1 
γ I X 

� e 
e � X e � e 

]
, (9) 

d = 

[
X 

� 

e � 

]
Ye and u = 

[
w 

b 

]
, (10) 

then (8) can be written as 

Hu = d, (11) 

where H = H(γ ) ∈ R (n +1) ×(n +1) is a symmetric matrix, u ∈ R n +1 , 

and d ∈ R n +1 . 

When the number of samples is much smaller than the number 

of features, the matrix H may be ill-conditioned and the solution of 

(11) may not be unique. Therefore, it is natural to sparsify problem 

(11) by introducing the L 0 -norm, and the new problem is given by 

min 

u 
|| u || 0 

s.t. ‖ Hu − d‖ 

2 ≤ δ, 
(12) 

where δ > 0 is a tolerance measure and || u || 0 denotes the num- 

ber of nonzero elements of vector u ∈ R n +1 to be estimated. The 
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