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a b s t r a c t 

The use of indefinite kernels has attracted many research interests in recent years due to their flexibility. 

They do not possess the usual restrictions of being positive definite as in the traditional study of kernel 

methods. This paper introduces the indefinite unsupervised and semi-supervised learning in the frame- 

work of least squares support vector machines (LS-SVM). The analysis is provided for both unsupervised 

and semi-supervised models, i.e., Kernel Spectral Clustering (KSC) and Multi-Class Semi-Supervised Ker- 

nel Spectral Clustering (MSS-KSC). In indefinite KSC models one solves an eigenvalue problem whereas 

indefinite MSS-KSC finds the solution by solving a linear system of equations. For the proposed indefi- 

nite models, we give the feature space interpretation, which is theoretically important, especially for the 

scalability using Nyström approximation. Experimental results on several real-life datasets are given to 

illustrate the efficiency of the proposed indefinite kernel spectral learning. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Kernel-based learning models have shown great success in var- 

ious application domains [1–3] . Traditionally, kernel learning is re- 

stricted to positive semi-definite (PSD) kernels as the properties 

of Reproducing Kernel Hilbert Spaces (RKHS) are well explored. 

However, many positive semi-definite kernels such as the sigmoid 

kernel [4] remain positive semi-definite only when their associ- 

ated parameters are within a certain range, otherwise they become 

non-positive definite [5] . Moreover, the positive definite kernels are 

limited in some problems due to the need of non-Euclidean dis- 

tances [6,7] . For instance in protein similarity analysis, the protein 

sequence similarity measures require learning with a non-PSD sim- 

ilarity matrix [8] . 

The need of using indefinite kernels in machine learning meth- 

ods attracted many research interests on indefinite learning in both 

theory and algorithm. Theoretical discussions are mainly on Re- 

producing Kernel Kre ̌ın Spaces (RKKS, [9,10] ), which is different to 

the RKHS for PSD kernels. In algorithm design, a lot of attempts 

have been made to cope with indefinite kernels by regularizing the 

non-positive definite kernels to make them positive semi-definite 

[11–14] . It is also possible to directly use an indefinite kernel in 

e.g., support vector machine (SVM) [4] . Though an indefinite ker- 
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nel makes the problem non-convex, it is still possible to get a local 

optimum as suggested by Lin and Lin [15] . One important issue 

is that kernel trick is no longer valid when an indefinite kernel 

is applied in SVM and one needs new feature space interpreta- 

tions to explain the effectiveness of SVM with indefinite kernels. 

The interpretation is usually about a pseudo-Euclidean (pE) space, 

which is a product of two Euclidean vector spaces, as analyzed in 

[10,16] . Notice that “indefinite kernels” literally covers asymmetric 

ones and complex ones. But this paper restricts “indefinite kernel”

to the kernels that correspond to real symmetric indefinite matri- 

ces, which is consistent to the existing literature on indefinite ker- 

nel. 

Indefinite kernels are also applicable to the least squares sup- 

port vector machines [17] . In LS-SVM, one solves a linear system 

of equations in the dual and the optimization problem itself has no 

additional requirement on the positiveness of the kernel. In other 

words, even if an indefinite kernel is used in the dual formulation 

of LS-SVM, it is still convex and easy to solve, which is different 

from indefinite kernel learning with SVM. However, like in SVM, 

using an indefinite kernel in LS-SVM looses the traditional inter- 

pretation of the feature space and a new formulation has been re- 

cently discussed in [18] . 

Motivated by the success of indefinite learning for some su- 

pervised learning tasks, we in this paper introduce indefinite sim- 

ilarities to unsupervised as well as semi-supervised models that 

can learn from both labeled and unlabeled data instances. There 

have been already many efficient semi-supervised models, such as 
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Laplacian support vector machine [19] , which assumes that neigh- 

boring point pairs with a large weight edge are most likely within 

the same cluster. However, to the best of our knowledge, there is 

no work that extends unsupervised/semi-supervised learning to in- 

definite kernels. 

Since using indefinite kernels in the framework of LS-SVM does 

not change the training problem, here we focus on multi-class 

semi-supervised kernel spectral clustering (MSS-KSC) model pro- 

posed by Mehrkanoon et al. [20] . MSS-KSC model and its exten- 

sions for analyzing large-scale data, data streams as well as multi- 

label datasets are discussed in [21–23] respectively. When one of 

the regularization parameters is set to zero, MSS-KSC becomes the 

kernel spectral clustering (KSC), which is an unsupervised learning 

algorithm introduced by Alzate and Suykens [24] . It is a special 

case of MSS-KSC. Due to the link to LS-SVM, it can be expected 

and also will be shown here that MSS-KSC with indefinite similar- 

ities are still easy to solve. However, the kernel trick is no longer 

valid and we have to find corresponding feature space interpreta- 

tions. The purpose of this paper is to introduce indefinite kernels 

for semi-supervised learning as well as unsupervised learning as a 

special case. Specifically, we propose indefinite kernels in MSS-KSC 

and KSC models. Subsequently, we derive their feature space in- 

terpretation. Besides of theoretical interests, the interpretation al- 

lows us to develop algorithms based on Nyström approximation for 

large-scale problems. 

The paper is organized as follows. Section 2 briefly reviews the 

MSS-KSC with PSD kernel. In Section 3 , the MSS-KSC with an in- 

definite kernel is derived and the interpretation of the feature map 

is provided. As a special case of MSS-KSC, the KSC with an indefi- 

nite kernel and its feature interpretation is discussed in Section 4 . 

In Section 5 , we discuss the scalability of the indefinite KSC/MSS- 

KSC model on large-scale problems. The experimental results are 

given in Section 6 to confirm the validity and applicability of the 

proposed model on several real life small and large-scale datasets. 

Section 7 ends the paper with a brief conclusion. 

2. MSS-KSC with PSD kernel 

Consider training data 

D = { x 1 , . . . , x n UL ︸ ︷︷ ︸ 
Unlabeled 

(D U ) 

, x n UL +1 , . . . , x n ︸ ︷︷ ︸ 
Labeled 
(D L ) 

} , (1) 

where { x i } n i =1 
∈ R 

d . The first n UL points do not have labels whereas 

the last n L = n − n UL points have been labeled. Assume that there 

are Q classes ( Q ≤ N c ), then the label indicator matrix Y ∈ R 

n L ×Q is 

defined as follows: 

Y i j = 

{
+1 if the i th point belongs to the jth class , 
−1 otherwise. 

(2) 

The primal formulation of multi-class semi-supervised KSC 

(MSS-KSC) described by Mehrkanoon et al. [20] is given as follows: 

min 

w 

(� ) ,b (� ) ,e (� ) 

1 

2 

Q ∑ 

� =1 

w 

(� ) T w 

(� ) − γ1 

2 

Q ∑ 

� =1 

e (� ) 
T 
V e (� ) + 

γ2 

2 

Q ∑ 

� =1 

(e (� ) − c (� ) ) T ˜ A (e (� ) − c (� ) ) 

subject to e (� ) = �w 

(� ) + b (� ) 1 n , � = 1 , . . . , Q, 

(3) 

where c � is the � th column of the matrix C defined as 

C = [ c (1) , . . . , c (Q ) ] n ×Q = 

[
0 n UL ×Q 

Y 

]
n ×Q 

. (4) 

Here 

� = [ ϕ (x 1 ) , . . . , ϕ (x n )] T ∈ R 

n ×h 

where ϕ(·) : R 

d → R 

h is the feature map and h is the dimension 

of the feature space which can be infinite dimensional. 0 n UL ×Q is a 

zero matrix of size n UL × Q, Y is defined previously, and the right 

hand of (4) is a matrix consisting of 0 n UL ×Q and Y . The matrix ˜ A is 

defined as follows: 

˜ A = 

[
0 n UL ×n UL 

0 n UL ×n L 

0 n L ×n UL 
I n L ×n L 

]
, 

where I n L ×n L is the identity matrix of size n L × n L . V is the inverse 

of the degree matrix defined as follows: 

V = D 

−1 = diag 

(
1 

d 1 
, · · · , 

1 

d n 

)
, 

where d i = 

∑ n 
j=1 K(x i , x j ) is the degree of the i th data point. 

As stated in [20] , the object function in the formulation (3) , 

contains three terms. The first two terms together with the set 

of constraints correspond to a weighted kernel PCA formulation 

in the least squares support vector machine framework given in 

[24] which is shown to be suitable for clustering and is referred 

to as kernel spectral clustering (KSC) algorithm. The last regular- 

ization term in (3) aims at minimizing the squared distance be- 

tween the projections of the labeled data and their corresponding 

labels. This term enforces the projections of the labeled data points 

to be as close as possible to the true labels. Therefore by incor- 

porating the labeled information, the pure clustering KSC model 

is guided so that it respects the provided labels by not misclas- 

sifying them. In this way, one could learn from both labeled and 

unlabeled instances. In addition thanks to introduced model selec- 

tion scheme in [20] , the MSS-KSC model is also equipped with the 

out-of-sample extension property to predict the labels of unseen 

instances. 

It should be noted that, ignoring the last regularization term, or 

equivalently setting γ2 = 0 and Q = N c − 1 , reduces the MSS-KSC 

formulation to kernel spectral clustering (KSC) described in [24] . 

Therefore, KSC formulation in the primal can be covered as a spe- 

cial case of MSS-KSC formulation. As illustrated by Mehrkanoon 

et al. [20] , given Q labels the approach is not restricted to find- 

ing just Q classes and instead is able to discover up to 2 Q hidden 

clusters. In addition, it uses a low embedding dimension to reveal 

the existing number of clusters which is important when one deals 

with large number of clusters. 

When the feature map ϕ in (3) is not explicitly known, in the 

context of PSD kernel, one may use the kernel trick and solve the 

problem in the dual. Elimination of the primal variables w 

( � ) , e ( � ) 

and making use of Mercer’s Theorem result in the following linear 

system in the dual [20] : 

γ2 

(
I n − R 1 n 1 

T 
n 

1 

T 
n R 1 n 

)
c (� ) = α(� ) − R 

(
I n − 1 n 1 

T 
n R 

1 

T 
n R 1 n 

)
�α(� ) , (5) 

where R = γ1 V − γ2 ̃
 A . In (5) , there are two coefficients, namely γ 1 

and γ 2 , which reflect the emphasis on unlabeled and labeled sam- 

ples, respectively, as shown in (3) . Besides, there could be one or 

multiple parameters in the kernel. All of these parameters could be 

tuned by cross-validation. 

3. MSS-KSC with indefinite kernel 

Traditionally, the kernel used in MSS-KSC is restricted to be 

positive semi-definite. When the kernel in (5) is indefinite, one still 

requires to solve a linear system of equations. However, the feature 

space has different interpretations compared to definite kernels. In 

what follows we establish and analyze the feature space interpre- 

tations for MSS-KSC. 

Theorem 3.1. Suppose that for a symmetric but indefinite kernel ma- 

trix K, the solution of the linear system (5) is denoted by [ α∗ , b ∗ ] T . 
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