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a b s t r a c t 

Active learning aims to train a classifier as fast as possible with as few labels as possible. The core el- 

ement in virtually any active learning strategy is the criterion that measures the usefulness of the un- 

labeled data based on which new points to be labeled are picked. We propose a novel approach which 

we refer to as maximizing variance for active learning or MVAL for short. MVAL measures the value 

of unlabeled instances by evaluating the rate of change of output variables caused by changes in the 

next sample to be queried and its potential labelling. In a sense, this criterion measures how unstable 

the classifier’s output is for the unlabeled data points under perturbations of the training data. MVAL 

maintains, what we refer to as, retraining information matrices to keep track of these output scores and 

exploits two kinds of variance to measure the informativeness and representativeness, respectively. By 

fusing these variances, MVAL is able to select the instances which are both informative and representa- 

tive. We employ our technique both in combination with logistic regression and support vector machines 

and demonstrate that MVAL achieves state-of-the-art performance in experiments on a large number of 

standard benchmark datasets. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many real-world applications of classification problems, we 

face the problem that obtaining labels is more difficult than col- 

lecting input data: we can easily acquire a large amount of such 

input data, but labeling these instances is quite burdensome, time- 

consuming, or expensive [46] . For a large part, this is because of 

the heavy involvement of human supervision during the labeling 

process. For example, a hospital produces large amounts of digi- 

tal images every day, but when categorizing these medical images 

one often needs to rely on medical doctors with a particular, and 

therefore expensive, expertise. Hence, it is essential to reduce the 

need for human annotation, bringing down cost by labeling fewer 

yet more informative samples. The problem studied in active learn- 

ing is how to select the most valuable subset and how to measure 

the value of individual instances or collections of these. 

In this work, we focus on, what we refer to as, retraining-based 

active learning in which one measures the usefulness of particu- 

lar instances based on all the possible models that are obtained by 

adding the instances to the labeled dataset and retraining the clas- 
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sifier with the different labels possible [40,44,51] . This means that 

with n unlabeled points and k different classes to choose from, we 

train nk different classifiers. The key idea behind this is that the 

value of an unlabeled instance can be estimated by the change it 

brings to the model when it is queried and used to retrain the 

model. 

Here we propose a new retraining-based active learning 

method: maximizing variance for active learning (MVAL). Our 

method selects the instances with maximum retraining variance. 

This variance stems from the variation presented in the next sam- 

ple to query and the possible labels those samples can have. The 

idea is that if the output of an instance changes dramatically, it 

means that this instance is very susceptible to the variations of in- 

put training data. On the other hand, if an instance’s output does 

not vary much, this indicates that the current classifier is very cer- 

tain about it. A sample with the largest changes in output value 

is most uncertain and this rate of change can be naturally mea- 

sured by the variance. Thus, the larger the variance of the out- 

put of an unlabeled instance, the higher the uncertainty it has. 

We propose to keep track of the estimated probability (or deci- 

sion output) of each unlabeled instance during the retraining pro- 

cedure. The recorded information is utilized to produce so-called 

retraining information matrices (RIMs), which are used to calcu- 

late the variances for all unlabeled samples. More specifically, two 
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different kinds of variance are computed to measure the informa- 

tiveness and representativeness. By selecting the instances with 

maximum variance, MVAL is able to query instances that are both 

informative and representative. Furthermore, MVAL can be incor- 

porated with both probabilistic and non-probabilistic classifiers, 

such as logistic regression, Naive Bayes, support vector machines 

and least squares classifier. In this paper, we construct the exper- 

iments of MVAL with logistic regression and support vector ma- 

chines. 

The remainder is organized as follows. Section 2 reviews related 

work, focussing on retraining-based active learning algorithms. The 

proposed method is presented in detail in Section 3 , followed by 

an extension of the proposed method to multiclass classification 

problems in Section 4 . Sections 5 and 6 report the experimental 

results on binary and multi-class classification problems, respec- 

tively. Finally, we conclude this paper in Section 7 . 

2. Related work 

In the past decades, various active learning algorithms, based 

on many different selection criteria, have been proposed. These ap- 

proaches rely on different heuristics. We can roughly divide these 

heuristics into two categories: informativeness and representative- 

ness. Informativeness estimates the ability of an instance in de- 

creasing the uncertainty of a statistical model, while representa- 

tiveness indicates whether a sample is representative of the un- 

derlying distribution [46] . For example, query-by-committee [49] , 

uncertainty sampling [27,51,55] , error reduction [15,40] , model 

change [2,13,20,48] , expected variance reduction [44] belong to the 

informativeness category, but each of them has its own criterion of 

informativeness. Clustering-based approaches [36,43,58] and vari- 

ance minimization methods [18,32,33,61] are included in the rep- 

resentativeness group. There are also methods that try to combine 

the two criteria, such as min-max view active learning [17] , density 

or diversity weighted methods [1,30,47,60,64] and multi-criteria fu- 

sion [7,52,54,56] . 

The framework of retraining-based active learning, which our 

method is also an instantiation of, was first proposed by Roy and 

Mccallum [40] to perform so-called expected error reduction (EER 

for short). Tong and Koller [51] used a retraining approach in com- 

bination with SVMs to find instances that, after labeling, approx- 

imately halve the version space. A series of active learning meth- 

ods which propose a scheme similar to EER, but with somewhat 

different motivations, were put forward in [8,13,15,44] . All in all, 

retraining-based active learners can be roughly divided into four 

categories: error reduction [15,40] , variance reduction [44] , model 

change [2,13,21,47] , and min-max view active learning [16,17] . The 

principal difference among the above methods lies in how they 

measure the usefulness of unlabeled samples after retraining the 

model. For example, error reduce methods like EER [40] attempt 

to estimate the future generalization error as an indicator of the 

value of an instance while variance reduction approach [44] turns 

to use the model variance as a measure of the informativeness. 

Similarly, model change algorithms seek various ways of defining 

such change, e.g. as gradient length [47] , and choose the instance 

which leads to maximum change. The min-max view active learn- 

ing directly measures the value of objective function during re- 

training procedure and selects the instance with minimum score 

in the worst case scenario. Recently, Yang and Loog [59] proposed 

to improve the retraining-based algorithms by integrating the un- 

certainty information in the selection criterion. 

We finally note that there exist close relationships between 

the proposed method and various active learning techniques, 

such as query-by-committee (QBC) [49] , and variance minimiza- 

tion [18,33,61] . Their connections will be particularly explained in 

Section 3.5 . 

3. Maximizing variance for active learning 

We give a detailed description of the proposed method. We 

provide the full algorithm and introduce what is at the core of our 

method: so-called retraining information matrices (RIMs). Based 

on these RIMs, we introduce the two main types of variance and 

describe how these are fused into a single criterion for instance 

selection. In all of this, we focus on probabilistic classifiers. In 

Section 3.4 , we show one way to adapt our method to a non- 

probabilistic classifier that does not directly provide a posterior 

probability estimate. We particularly focus on the SVM, which is 

the classifiers we are going to experiment with next to logistic re- 

gression. In Section 3.5 , we analysis the connections of the pro- 

posed method and several existing active learning approaches. First 

however, we spend a few words on the specific active learning set- 

ting we consider. 

3.1. Specific setting 

We study pool-based active learning in which the selection of 

individual instances to be labeled is sequential and myopic. This 

means that we assume we already have a large pool of unlabeled 

data with a small number of labeled data, and a single sample is 

selected for labeling at a time [46] . We start with the binary classi- 

fication problem, then present how to extend the proposed method 

to multiclass tasks in the following section, Section 4 . We take U
to be the pool of n unlabeled instances { x i } n i =1 

and L to be the al- 

ready labeled training set, where y i = { +1 , −1 } is the class label of 

x i . P L (y | x ) represents the conditional probability of y given x on 

the basis of a classifier trained on L . 

3.2. Retraining information matrices 

Fig. 1 gives a pictorial overview of the proposed method. The 

proposed method can be used with different types of classifiers. In 

addition, Algorithm 1 summarizes the overall training procedure of 

Algorithm 1 Maximizing Variance for Active Learning 

1: Input: Labeled data L , unlabeled data U
2: repeat 

3: Train on L and calculate entropy e j for all x j ∈ U; 

4: For each x i ∈ U , retrain on L 

+ = L ∪ { x i , +1 } , let P i, j = 

P L + (+1 | x j ) , x j ∈ U; 

5: For each x i ∈ U , retrain on L 

+ = L ∪ { x i , −1 } , let N i, j = 

P L + (+1 | x j ) , x j ∈ U; 

6: Obtain weighted 

ˆ P and 

ˆ N and compute the variance using 

Eq. 3 ; 

7: Query the instance x ∗ with maximum variance and label it 

y ∗, update L ← L ∪ { x ∗, y ∗} , U ← U\{ x ∗} ; 
8: until Stopping criterion is satisfied 

MVAL for probabilistic classifiers. The proposed method generates 

two matrices P, N , with the purpose of recording the probability 

of all unlabeled instances after each retraining procedure. We first 

assume that the next queried instance is labeled as +1 , we then 

extend the current labeled set L 

+ = L ∪ { x i , +1 } , retrain the clas- 

sifier on L 

+ , and calculate the conditional probability P L + (+1 | x j ) 
for all x j ∈ U . Each x i ∈ U is used to retrain the model, resulting 

in a matrix P of size n × n , where each element ( i, j ) in P is as- 

signed P L + (+1 | x j ) . For example, assuming that U consists of six 

unlabeled samples x i , i = 1 , 2 , . . . 6 , we could get the matrix P in 

Fig. 1 a. Equivalently, if we categorize all of the next queried in- 

stances as −1 , we retrain the model with L 

+ = L ∪ { x i , −1 } for all 

x i ∈ U , we can construct a matrix N that contains the elements 

N i, j = P L + (+1 | x j ) , of which an example is shown in Fig. 1 b. 
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