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a b s t r a c t 

The expectation & maximization (EM) for Gaussian mixtures is popular as a clustering algorithm. How- 

ever, the EM algorithm is sensitive to initial values, and so Ueda and Nakano [4] proposed the determin- 

istic annealing EM (DA-EM) algorithm to improve it. In this paper, we investigate theoretical behaviors of 

the EM and DA-EM algorithms. We first derive a general Jacobian matrix of the DA-EM algorithm with 

respect to posterior probabilities. We then propose a theoretical lower bound for initialization of the an- 

nealing parameter in the DA-EM algorithm. On the other hand, some researches mentioned that the EM 

algorithm exhibits a self-annealing behavior, that is, the equal posterior probability with small random 

perturbations can avoid the EM algorithm to output the mass center for Gaussian mixtures. However, 

there is no theoretical analysis on this self-annealing property. Since the DA-EM will become the EM 

when the annealing parameter is 1, according to the Jacobian matrix of the DA-EM, we can prove the 

self-annealing property of the EM algorithm for Gaussian mixtures. Based on these results, we give not 

only convergence behaviors of the equal posterior probabilities and initialization lower bound of the tem- 

perature parameter of the DA-EM, but also a theoretical explanation why the EM algorithm for Gaussian 

mixtures exhibits a self-annealing behavior. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Since Dempster et al. [1] proposed the EM algorithm to deal 

with incomplete data, the EM and its extensions have been widely 

studied and applied in various areas (see [2,3] ). In the literature, 

there are many researches in developing the EM algorithm and 

its variants for Gaussian mixtures, such as Ueda and Nakano [4] , 

Figueiredo and Jain [5] , Zhang et al. [6] , Yang et al. [7] , Gkalelis 

et al. [8] , Tao et al. [9] , Gao et al. [10] . It is always interesting 

to study the convergence properties of the EM algorithm. Boyles 

[11] first claimed that the generalized EM sequence will converge 

to a compact connected set of local maxima of the likelihood func- 

tion. At the same time, Wu [12] proved that the EM algorithm 

converges to the stationary points of the log likelihood function. 

In other words, the EM may converge to a local maximum or 

a saddle point of the log likelihood function. Furthermore, Meng 

and Rubin [13] considered a supplemented EM (SEM) algorithm 

and then used the SEM as a tool for monitoring whether the EM 

has converged to a (local) maximum. To analyze the convergence 

rate of the EM algorithm for Gaussian mixtures, Xu and Jordan 

∗ Corresponding author. 

E-mail address: msyang@math.cycu.edu.tw (M.-S. Yang). 

[14] and Ma et al. [15] presented the Hessian matrix of the log- 

likelihood function for Gaussian mixtures with respect to the col- 

lection of mixture parameters, Ma and Fu [16] proved that, if the 

initial parameters are set within the neighborhood, the EM algo- 

rithm will always converge to the consistent solution, and Roche 

et al. [17] considered the convergence property of the three EM- 

like algorithms for Markov random field segmentation. 

In general, the EM for Gaussian mixtures is popular as a clus- 

tering algorithm. Since the performance of the EM algorithm for 

Gaussian mixtures heavily depends on initializations, Ueda and 

Nakano [5] proposed the deterministic annealing EM (DA-EM) al- 

gorithm to improve it. The basic idea of the DA-EM is to begin 

at a high temperature β , and then decreases the temperature to 

zero according to some cooling strategy to avoid poor local op- 

tima. The DA-EM algorithm had been studied and applied in var- 

ious areas, such as Shoham [18] , Itaya et al. [19] , Guo and Cui 

[20] and Okamura et al. [21] . On the other hand, Figueiredo and 

Jain [6] pointed out that, the heuristic behind the deterministic 

annealing is to force the entropy of the assignments to decrease 

slowly for avoiding poor local optima. They also mentioned that 

the EM algorithm itself has a self-annealing behavior without a 

cooling strategy and just set an uninformative initialization of the 

posterior probabilities to be 1/ c with small random perturbations. 
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Such an observation suggests that, the equal posterior probability 

with small random perturbations is not an asymptotically stable 

fixed point of the EM algorithm for Gaussian mixtures, and this 

can actually interpret why the EM algorithm for Gaussian mixtures 

exhibits a self-annealing property. However, as we know, no theo- 

retical analysis and proving were proposed in the literature. 

In this paper, we investigate convergence behaviors of DA-EM, 

especially for the annealing parameter in the DA-EM algorithm, 

and give theoretical results for self-annealing behavior of the EM 

algorithm. We first construct a new Jacobian matrix of the DA-EM 

for Gaussian mixtures with respect to posterior probabilities. We 

then derive a theoretical rule for the valid temperature parame- 

ter initialization bound of the DA-EM algorithm to avoid the equal 

posterior probabilities to be an asymptotically stable fixed point 

of the DA-EM by using the Jacobian matrix analysis. That is, we 

give the annealing parameter selection for the DA-EM algorithm. 

In general, the self-annealing behavior of EM is highly related to 

the annealing parameter β of DA-EM where, if the annealing pa- 

rameter β is equal to 1, then DA-EM becomes EM. Therefore, we 

can also prove that the EM algorithm always satisfies the necessary 

condition for the equal posterior probability not being an asymp- 

totically stable fixed point of EM for Gaussian mixtures. That is, 

we prove that the EM algorithm for Gaussian mixtures can exhibit 

a self-annealing property. The remainder of the paper is organized 

as follows. In Section 2 , we review the EM and DA-EM algorithms 

for Gaussian mixtures with problem descriptions. In Section 3 , we 

first construct the Jacobian matrix of the DA-EM with respect to 

posterior probabilities. We then give some convergence theorems 

and also the theoretical rule for the valid initialization bound of 

the annealing parameter β . And so, we give a theoretical result for 

the self-annealing behavior of EM. In Section 4 , we carry out sev- 

eral experiments to demonstrate our theoretical results. We also 

use an example to show how to apply the Jacobian matrix of the 

DA-EM for analyzing its convergence rate. Finally, we give the con- 

clusions in Section 5 . 

2. The EM and DA-EM algorithms for Gaussian mixtures 

In this section, we first give a brief description of the EM algo- 

rithm for Gaussian mixtures. A Gaussian mixture can be described 

as follows: 

f ( x | �) = 

c ∑ 

i =1 

αi f ( x | �i ) (1) 

where αi > 0, 
∑ c 

i =1 αi = 1 , �i = ( μi , 
∑ 

i ) , x ∈ R s is a column vector, 

and f ( x | �i ) is defined as an s -variate Gaussian distribution with 

f (x | �i ) = ( 2 π) −s/ 2 | ∑ 

i | − 1 
2 exp { − 1 

2 ( x − μi ) 
T ( 

∑ 

i ) 
−1 ( x − μi ) } . There- 

fore, a Gaussian mixture f ( x | �) can be parameterized by the set 

� = { �1 , ..., �c , α1 , ..., αc } , where c represents the number of com- 

ponents in the Gaussian mixture f ( x | �). Let the data set X = 

{ x 1 , ..., x n } be a random sample of size n drawn from the distri- 

bution f ( x | �). Then its log-likelihood function can be written as 

follows: 

log f ( X | �) = log 

n ∏ 

k =1 

f ( x k | �) = 

n ∑ 

k =1 

log 

c ∑ 

i =1 

αi f ( x k | �i ) (2) 

Obviously, the parameter � = { �1 , ..., �c , α1 , ..., αc } can be es- 

timated as 

ˆ �ML = arg max 
�

{ log f ( X | �) } (3) 

For a finite mixture, the EM algorithm considers X = { x 1 , ..., x n } 
as observations. A label set L = { l 1 , ..., l n } is considered as a missing 

part corresponding to the given data X = { x 1 , ..., x n } in which l k ∈ 

{ 1 , 2 , . . . , c} . If l k = i , it means that the k thdata point belongs to the 

i th class. That is, we have g k = [ l 1 k , · · · , l ck ] 
T , where l ik = 1 , i f l k = i ; 

0, otherwise. Therefore, the complete log-likelihood can be repre- 

sented as follows: 

log f (X, L | �) = 

n ∑ 

k =1 

log 

(
c 

�
i =1 

[ αi f ( x k | � i )] l ik 
)

= 

n ∑ 

k =1 

c ∑ 

i =1 

l ik log [ αi f ( x k | � i )] (4) 

Assumed that � = { �1 , ..., �c , α1 , ..., αc } is given, the condi- 

tional expectation z ik of l ik can be given by the following Eq. (5) . 

z ik = E [ l ik | X, �] = P r [ l ik = 1 | x k , �] = 

αi f ( x k | �i ) ∑ c 
i =1 αi f ( x k | �i ) 

(5) 

For the Gaussian mixture models, after z ik is obtained, the max- 

imum likelihood (ML) estimates of log f ( X | �)for the parameter � = 

{ �1 , ..., �c , α1 , ..., αc } are as follows: 

αi = 

1 

n 

n ∑ 

k =1 

z ik (6) 

μi = 

∑ n 
k =1 z ik x k ∑ n 

k =1 z ik 
(7) 

�i = 

∑ n 
k =1 z ik ( x k − μi ) ( x k − μi ) 

T ∑ n 
k =1 z ik 

(8) 

According to the theorem of Wu [12] for the EM sequence, the 

EM algorithm for Gaussian mixtures converges to the stationary 

points of log f ( X | �). When � is a stationary point of log f ( X | �), Ma 

et al. [15] gave the Hessian matrix of log f ( X | �) with respect to �

and then gave the result about the asymptotic convergence rate of 

the EM algorithm for Gaussian mixtures. 

Since the EM algorithm for Gaussian mixtures is sensitive to 

initials, Ueda and Nakano [4] proposed the deterministic anneal- 

ing EM (DA-EM) algorithm to improve it. The DA-EM algorithm in- 

troduces a parameter β with its reciprocal corresponding to the 

“temperature”. The only difference between the DA-EM and EM al- 

gorithms is that the DA-EM adds the annealing parameter β in the 

posterior probability z ik as: 

z ik = 

( αi f ( x k | �i ) ) 
β∑ c 

i =1 ( αi f ( x k | �i ) ) 
β

(9) 

It is obvious that the DA-EM will become the EM when β = 

1 . The DA-EM algorithm starts β (0) at a small enough value (i.e. 

high temperature) and slowly increases β up to 1. Thus, the DA- 

EM algorithm (Ueda and Nakano [4] ) can be rewritten as follows: 

DA-EM algorithm ( Ueda and Nakano [4] ) 

1. Initialize 
• Set β ← β (0) (0 < β (0) < < 1). 
• Set �(0) using k-means algorithm for better results. 

2. Iterate until convergence 
• E-step: estimate posterior probabilities by Eq. (9) . 
• M-step: estimate �( new ) by Eqs. (6) , (7) and (8) . 

3. Increase β . 

4. If β < 1, go back to step 2; 

Else stop the procedure. 

Note that, in this paper we increase the value of parameter β
with 1.01 times, i.e. β ( new ) ← β ( old ) × 1.01. In fact, how much in- 

creasing in β can be determined by users. We will discuss the in- 

fluence of the increasing factor in numerical examples and experi- 

ments of Section 4 . In the DA-EM algorithm, the problem of max- 

imizing the log-likelihood function is reformulated as the prob- 

lem of minimizing a free energy function. The algorithm begins 

at high temperature corresponding to high entropy that the initial 
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