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a b s t r a c t 

A new training algorithm for neural networks in binary classification problems is presented. It is based 

on the minimization of an estimate of the Bayes risk by using Parzen windows applied to the final one- 

dimensional nonlinear transformation of the samples to estimate the probability of classification error. 

This leads to a very general approach to error minimization and training, where the risk that is to be 

minimized is defined in terms of integrated one-dimensional Parzen windows, and the gradient descent 

algorithm used to minimize this risk is a function of the window that is used. By relaxing the constraints 

that are typically applied to Parzen windows when used for probability density function estimation, for 

example by allowing them to be non-symmetric or possibly infinite in duration, an entirely new set of 

training algorithms emerge. In particular, different Parzen windows lead to different cost functions, and 

some interesting relationships with classical training methods are discovered. Experiments with synthetic 

and real benchmark datasets show that with the appropriate choice of window, fitted to the specific prob- 

lem, it is possible to improve the performance of neural network classifiers over those that are trained 

using classical methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Rosenblatt proposed the Perceptron Rule to train a two-class 

linear discriminant in the late 1950s [1,2] . It can be considered as 

the first Learning Machine (LM). In the field of Statistics, soft acti- 

vations - called link functions - appeared as the result of consid- 

ering different classes of likelihoods or probabilistic solutions (see 

[3] , Ch. 4). This is the case of logistic and probit regressions, that 

use a sigmoid or a Gaussian distribution as activation functions 

for the linear combinations. Although several works presented the 

chain rule approach to train multi-layer networks [4–6] that in- 

clude other activations to build non-linear transformations of the 

input samples, it was not until the Back-Propagation (BP) algorithm 

was introduced in 1986 [7,8] that Multi-Layer Perceptrons (MLPs) 

received a great deal of attention and found many practical ap- 

plications, including ensemble forms [9–11] to increase their ex- 

pressive capabilities. The appearance of Support Vector Machines 

[12,13] that employ the kernel trick [14,15] and impose a hinge cost 

diminished the interest in MLPs in the late 1990s and early 20 0 0s, 

but the introduction of Deep Learning (DL) architectures and algo- 

rithms [16–18] put them again in the focus of current research. 
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Bayesian formulations [19] play a central role in analytical stud- 

ies of decision and classification [20,21] . However, for the impor- 

tant class of discriminative (non-generative) LM classifiers, the only 

well-studied connection with Bayesian theory is to get estimates 

of the “a posteriori” probabilities of the hypotheses at the output 

of a LM trained by means of Bregman divergences [22] . Overviews 

of this subject from the perspective of Machine Learning may be 

found in [23–25] . 

In this paper, we will establish a general and direct corre- 

spondence between Bayesian risk minimization and LM classifier 

training for binary classification, via modeling the one-dimensional 

output of the neural network by means of the Parzen windows 

method [26] to estimate probability densities. Addressing just bi- 

nary cases is not a serious limitation, because binarizing multi- 

class problems provides better (ensemble) machine designs than 

using classical soft-max forms [10,27] . Using single machines for 

multi-class problems would impose a multi-threshold decision, 

which is difficult to design and will degrade performance, or it 

will require multi-dimensional kernels, creating serious difficulties 

in their design. The direct connection between the windows that 

are applied in the Parzen estimator and the cost or risk function 

that is minimized emerges immediately, showing that several well 

known cost functions are particular cases of the general framework 
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that is proposed. Some experiments show that this perspective can 

help to improve the performance of classical LM classifiers. 

We want to emphasize that this approach merges discrimi- 

native training with generative approaches concepts: The overall 

training process is carried out according to discriminative princi- 

ples, but the last step consists of modeling the non-linear transfor- 

mation from input patterns to the output of the network by means 

of unidimensional Parzen windows. This permits to combine some 

advantages of both families of techniques, such as high perfor- 

mance and robustness against imbalanced situations. To avoid any 

kind of confusion, we want to strongly remark that we are propos- 

ing to apply Parzen windowing just at the output level of the 

LM classifier, in the definition of the cost to be minimized during 

training. This definition is independent of the classifier architec- 

ture, whose internal layers can use any form of activations, even 

including radial basis functions. 

The rest of the paper is organized as follows. The basic for- 

mulation of our approach and the gradient-type algorithms that 

serve to optimize the estimated Bayesian objective are introduced 

in Section 2 . Some characteristics of Parzen windows, focusing on 

their role in the training algorithm, are discussed in Section 3 . In 

Section 4 , the learning rules obtained using some particular win- 

dows are presented, and the equivalence of some of them with 

classical methods such as the perceptron rule is proved. A series 

of experiments that illustrate the benefits of adopting some forms 

of windows are presented in Section 5 . The main conclusions of 

this work and some avenues for further research close our contri- 

bution. 

2. Training of neural network classifiers minimizing Bayesian 

risk by Parzen windows 

The basic problem of binary classification may be described 

simply as follows. Given a training set T , 

T = { ( x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x N , y N ) } (1) 

consisting of N pairs of labeled patterns, ( x i , y i ), where x i are 

vectors and y ∈ { ±1} are target values that represent one of two 

classes, it is assumed that there is some unknown target function, 

f : X −→ Y (2) 

mapping x to y that is to be learned from the training data. The 

goal is then to find a function g ( x ) within a set of functions, F , 

for predicting y from x , where the function minimizes some error, 

or is optimal according to some criterion. In this work, the set of 

functions (classifiers) that are considered are those that correspond 

to a neural network with a single output and a threshold-based 

decision. Thus, each function in F is the soft output of the network 

that is a nonlinear function, 

z = g(x , w ) (3) 

where w is a set of trainable parameters, and the decision rule of 

the classifier is 

̂ y = sgn (z) (4) 

The analytical expression of g ( x, w ) in terms of the parameters w 

depends on the architecture of the neural network. The proposed 

training method is valid for every possible architecture, such as an 

MLP with one or several hidden layers, or a Radial Basis Function 

(RBF) network, just to mention the most common architectures; 

and with every possible activation function in the neurons of the 

network (hyperbolic tangent, rectified linear units, Gaussian units 

for RBF’s, etc.). But it can also be applied to a linear classifier, i.e., 

z = g(x , w ) = w 

T x . 

Once that the neural network architecture is fixed, and thus the 

analytical expression of g ( x, w ) is fixed, the neural network param- 

eters that are to be found are those that minimize the following 

simplified Bayes’ risk 1 

R = c −1 Pr ( ̂  y = 1 | y = −1) Pr (y = −1) + c 1 Pr ( ̂  y = −1 | y = 1) Pr (y = 1) 

(5) 

where c i is the cost of making an error when the correct class is 

i . The probabilities Pr { y = i } may be estimated from the relative 

number of samples of each class in the training set, but estimating 

the conditional probabilities can be more difficult. However, since 

x is classified according to the decision rule ̂  y = sgn (z) , where the 

output of the neural network, z , is one-dimensional, then the con- 

ditional probabilities are 

Pr ( ̂  y = 1 | y = −1) = 

∫ ∞ 

0 

p(z| y = −1) dz (6) 

Pr ( ̂  y = −1 | y = 1) = 

∫ 0 

−∞ 

p(z| y = 1) dz (7) 

Because the conditional densities p ( z | y ) are unknown, a large 

number of training samples in each class may be necessary in or- 

der to estimate them accurately. However, z is a one-dimensional 

variable, and all that is required are estimates of the integrals of 

those conditional densities, and not the densities themselves, so it 

may not be as critical to have a large training set. Therefore, we 

consider to use Parzen window estimates of the conditional densi- 

ties p(z| y = i ) from the set of outputs { z n } associated to the labeled 

training set {( x n , y n )} to obtain an estimate of the Bayes risk (5) . 

Note that this approach is notably different of using Parzen win- 

dows to obtain estimates of the conditional distributions of the in- 

put, p(x | y = i ) or the joint input-output distributions, p ( x , y ), such 

as in [28,29] . These distributions related with the input patterns 

are multi-dimensional, while here Parzen method is applied to es- 

timate conditional densities at the output of the neural network, 

p(z| y = i ) , which are one-dimensional. Parzen window estimates 

of these distributions are as follows 

̂ p (z| y = i ) = 

1 

N i 

∑ 

n ∈ S i 
k i (z − z n ) ; i ∈ {±1 } (8) 

where 

S 1 = { n : y n = 1 } and S −1 = { n : y n = −1 } (9) 

and where N i is the number of samples in S i and k i ( z ) is the Parzen 

window used to estimate p(z| y = i ) . Note that, in order to be a 

valid window, it is necessary that k i ( z ) ≥ 0 and has unit area. Sub- 

stituting the Parzen estimate of the conditional densities into the 

conditional probabilities in Bayes’ risk gives 

Pr ( ̂  y = 1 | y = −1) = 

1 

N −1 

∑ 

n ∈ S −1 

∫ ∞ 

0 

k −1 (z − z n ) dz (10) 

Pr ( ̂  y = −1 | y = 1) = 

1 

N 1 

∑ 

n ∈ S 1 

∫ 0 

−∞ 

k 1 (z − z n ) dz (11) 

Since these probabilities involve integrals of the Parzen windows, 

define K i ( z ) to be the integral of the window, 

K i (z) = 

∫ z 

−∞ 

k i (α) dα (12) 

An example is given in Fig. 1 , where the Parzen window is a rect- 

angular pulse. Note that since k i ( z ) has the form of a probability 

1 Note that in this definition of the risk, the costs of taking correct decisions 

in the classical Bayesian formulation have been neglected, which is a common as- 

sumption that does not limit the validity of the formulation. 
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