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a b s t r a c t 

The partially observable hidden Markov model is an extension of the hidden Markov Model in which the 

hidden state is conditioned on an independent Markov chain. This structure is motivated by the presence 

of discrete metadata, such as an event type, that may partially reveal the hidden state but itself emanates 

from a separate process. Such a scenario is encountered in keystroke dynamics whereby a user’s typing 

behavior is dependent on the text that is typed. Under the assumption that the user can be in either an 

active or passive state of typing, the keyboard key names are event types that partially reveal the hidden 

state due to the presence of relatively longer time intervals between words and sentences than between 

letters of a word. Using five public datasets, the proposed model is shown to consistently outperform 

other anomaly detectors, including the standard HMM, in biometric identification and verification tasks 

and is generally preferred over the HMM in a Monte Carlo goodness of fit test. 

Published by Elsevier Ltd. 

1. Introduction 

The hidden Markov model (HMM), which dates back over 50 

years [1] , has seen numerous applications in the recognition of 

human behavior, such as speech [2] , gesture [3] , and handwriting 

[4] . Recent successes have leveraged the expressive power of con- 

nectionist models by combining the HMM with feed-forward deep 

neural networks, which are used to estimate emission probabilities 

[5–7] . Despite the increasing interest in sequential deep learning 

techniques, e.g., recurrent neural networks, HMMs remain tried- 

and-true for time series analyses. The popularity and endurance 

of the HMM can be at least partially attributed to the tractability 

of core problems (parameter estimation and likelihood calculation), 

ability to be combined with other methods, and the level of insight 

it provides to the data. 

At least part its success can also be attributed to its flexibility, 

with many HMM variants having been developed for specific appli- 

cations. This usually involves introducing a dependence, whether 

it be on time [8] , previous observations [9] , or a semantic con- 

text [10] . The motivation for doing so is often to better reflect the 

structure of the underlying problem. Although many of these vari- 
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ations have increased complexity and number of parameters over 

the standard HMM, their estimation remains tractable. 

In this work, we introduce the partially observable hidden 

Markov model (POHMM), an extension of the HMM intended for 

keystroke dynamics. We are interested in modeling the temporal 

behavior of a user typing on a keyboard, and note that certain key- 

board keys are thought to influence typing speed. Non-letter keys, 

such as punctuation and the Space key, indicate a greater proba- 

bility of being in a passive state of typing, as opposed to an active 

state, since the typist often pauses between words and sentences 

as opposed to between letters in a word [11] . The POHMM reflects 

this scenario by introducing a dependency on the key names which 

are observed alongside the time intervals, and in this way, the keys 

provide a context for the time intervals. 

The idea of introducing a context upon which some behavior 

depends is not new. Often, an observation depends not only on a 

latent variable but on the observations that preceded it. For ex- 

ample, the neighboring elements in a protein secondary structure 

can provide context for the element under consideration, which 

is thought to depend on both the previous element and a hidden 

state [9] ; nearby phonemes can aid in the recognition of phonemes 

[12] ; and the recognition of human activities can be achieved with 

greater accuracy by considering both a spatial context (e.g., where 

the activity occurred) and temporal context (e.g., the duration of 

the activity) [13] . 

Handwriting recognition has generally seen increased perfor- 

mance with models that consider the surrounding context of a 
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handwritten character. The rationale for such an approach is that a 

character may be written with different style or strokes depending 

on its neighboring characters in the sequence. Under this assump- 

tion, the neighboring pixels or feature vectors of neighboring char- 

acters can provide additional context for the character under con- 

sideration. Alternatively, a separate model can be trained for each 

context in which the character appears, e.g., “t” followed by “e”

versus “t” followed by “h” [10] . This same principle motivates the 

development of the POHMM, with the difference being that the 

context is provided not by the observations themselves, but by a 

separate sequence. 

We apply the POHMM to address the problems of user 

identification, verification, and continuous verification, leveraging 

keystroke dynamics as a behavioral biometric. Each of these prob- 

lems requires estimating the POHMM parameters for each individ- 

ual user. Identification is performed with the maximum a poste- 

riori (MAP) approach, choosing the model with maximum a pos- 

terior probability; verification, a binary classification problem, is 

achieved by using the model log-likelihood as a biometric score; 

and continuous verification is achieved by accumulating the scores 

within a sliding window over the sequence. Evaluated on five pub- 

lic datasets, the proposed model is shown to consistently out- 

perform other leading anomaly detectors, including the standard 

HMM, in biometric identification and verification tasks and is gen- 

erally preferred over the HMM in a Monte Carlo goodness of fit 

test. 

All of the core HMM problems remain tractable for the POHMM, 

including parameter estimation, hidden state prediction, and like- 

lihood calculation. However, the dependency on event types intro- 

duces many more parameters to the POHMM than its HMM coun- 

terpart. Therefore, we address the problem of parameter smooth- 

ing, which acts as a kind of regularization and avoids overfit- 

ting [14] . In doing so, we derive explicit marginal distributions, 

with event type marginalized out, and demonstrate the equiva- 

lence between the marginalized POHMM and the standard HMM. 

The marginal distributions conveniently act as a kind of backoff, or 

fallback, mechanism in case of missing data, a technique rooted in 

linguistics [15] . 

The rest of this article is organized as follows. Section 2 briefly 

describes keystroke dynamics as a behavioral biometric. 

Section 3 introduces the POHMM, followed by a simulation 

study in Section 4 and a case study of the POHMM applied to 

keystroke dynamics in Section 5 . Section 6 reviews previous 

modeling efforts for latent processes with partial observability and 

contains a discussion. Finally, Section 7 concludes the article. The 

POHMM is implemented in the pohmm Python package and source 

code is publicly available. 1 

2. Keystroke dynamics 

Keystroke dynamics refers to the way a person types. Promi- 

nently, this includes the timings of key press and release events, 

where each keystroke is comprised of a press time t n and a du- 

ration d n . The time interval between key presses, τn = t n − t n −1 , is 

of interest. Compared to random time intervals (RTIs) in which a 

user presses only a single key [16] , key press time intervals occur 

between different keys and are thought to be dependent on key 

distance [11] . A user’s keystroke dynamics is also thought to be 

relatively unique to the user, which enable biometric applications, 

such as user identification and verification [17] . 

As a behavioral biometric, keystroke dynamics enables low-cost 

and non-intrusive user identification and verification. Keystroke 

dynamics-based verification can be deployed remotely, often as 

1 Available at https://github.com/vmonaco/pohmm and through PyPI. 

a second factor to username-password verification. Some of the 

same attributes that make keystroke dynamics attractive as a be- 

havioral biometric also present privacy concerns [18] , as there exist 

numerous methods of detecting keystrokes without running soft- 

ware on the victim’s computer. Recently, it has been demonstrated 

that keystrokes can be detected through a wide range of modali- 

ties including motion [19] , acoustics [20] , network traffic [21] , and 

even WiFi signal distortion [22] . 

Due to the keyboard being one of the primary human-computer 

interfaces, it is also natural to consider keystroke dynamics as a 

modality for continuous verification in which a verification decision 

is made upon each key pressed throughout a session [23] . Contin- 

uous verification holds the promise of greater security, as users are 

verified continuously throughout a session beyond the initial login, 

which is considered a form of static verification . Being a sequential 

model, the POHMM is straightforward to use for continuous verifi- 

cation in addition to identification and static verification. 

Keystroke time intervals emanate from a combination of physi- 

ology (e.g., age, gender, and handedness [24] ), motor behavior (e.g., 

typing skill [11] ), and higher-level cognitive processes [25] , high- 

lighting the difficulty in capturing a user’s typing behavior in a 

succinct model. Typing behavior generally evolves over time, with 

highly-practiced sequences able to be typed much quicker [26] . In 

biometrics, this is referred to as template aging . A user’s keystroke 

dynamics is also generally dependent on the typing task. For exam- 

ple, the time intervals observed during password entry are much 

different than those observed during email composition. 

3. Partially observable hidden Markov model 

The POHMM is intended for applications in which a sequence 

of event types provides context for an observed sequence of time 

intervals . This reasoning extends to activities other than keystroke 

dynamics, such as email, in which a user might be more likely to 

take an extended break after sending an email instead of receiving 

an email, and programming, in which a user may fix bugs quicker 

than making feature additions. The events types form an inde- 

pendent Markov chain and are observed alongside the sequence 

of time intervals. This is in contrast to HMM variants where the 

neighboring observations themselves provide a context, such as 

the adjacent characters in a handwritten segment [10] . Instead, the 

event types are independent of the dynamics of the model. 

With this structure, a distinction can be made between user 

behavior and task : the time intervals comprise the behavior , and 

the sequence of event types, (e.g., the keys pressed) comprise the 

task. While the time intervals reflect how the user behaves, the se- 

quence of events characterize what the user is doing. This distinc- 

tion is appropriate for keystroke dynamics, in which the aim is to 

capture typing behavior but not the text itself which may be more 

appropriately modeled by linguistic analysis. Alternatively, in case 

the user transcribes a sequence, such as in typing a password, the 

task is clearly defined, i.e. the user is instructed to type a particular 

sequence of characters. The POHMM aims to capture the temporal 

behavior, which depends on the task. 

3.1. Description 

The HMM is a finite-state model in which observed values at 

time t depend on an underlying latent process [2] . At the n th time 

step t n , a feature vector x n is emitted and the system can be in 

any one of M hidden states, z n . Let x N 1 be the sequence of observed 

emission vectors and z N 
1 

the sequence of hidden states, where N is 

the total number of observations. The basic HMM is defined by the 

recurrence relation, 

P 
(
x 

n +1 
1 , z n +1 

1 

)
= P ( x 

n 
1 , z 

n 
1 ) P ( x n +1 | z n +1 ) P ( z n +1 | z n ) . (1) 
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