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a b s t r a c t 

To improve the performance of ensemble techniques for temporal data clustering, we propose a novel 

bi-weighted ensemble in this paper to solve the initialization and automated model selection problems 

encountered by all HMM-based clustering techniques and their applications. Our proposed ensemble fea- 

tures in a bi-weighting scheme in the process of examining each partition and optimizing consensus func- 

tion on these input partitions in accordance with their level of importance. Within our proposed scheme, 

the multiple partitions, generated by HMM-based K-models under different initializations, are optimally 

re-consolidated into a representation of bi-weighted hypergraph, and the final consensus partition is gen- 

erated and optimized via the agglomerative clustering algorithm in association with a dendrogram-based 

similarity partitioning (DSPA). In comparison with the existing state of the arts, our proposed approach 

not only achieves the advantage that the number of clusters can be automatically determined, but also 

the superior clustering performances on a range of temporal datasets, including synthetic dataset, time 

series benchmark, and real-world motion trajectory datasets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

As an important and unsupervised data mining technique, clus- 

tering aims at dividing an unlabeled dataset into different groups 

named as clusters, where all the data points grouped in the same 

cluster should be coherent or homogeneous [1] . While many clus- 

tering algorithms have been developed for temporal data mining 

tasks [2,3] , they share a common trend that temporal informa- 

tion processing is primarily carried out via modifying the exist- 

ing clustering approaches. As many such algorithms work directly 

with raw temporal data, these clustering algorithms are thus called 

proximity-based approaches, in which the major modification lies 

in the fact that the distance/similarity measure for static data is re- 

placed by one designed to be more appropriate for temporal data. 

Other developed algorithms [4–20] intend to convert raw tempo- 

ral data into either a feature vector with lower dimensions, or a 

number of statistical models, to which a conventional clustering 

algorithm is applied. These methods are often called feature-based 

and model-based approaches. 

As indicated in the published literature [4–7,9–13] , the model- 

based approach is widely used for temporal data clustering, in 
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which each cluster is mathematically represented by a parametric 

model, such as Gaussian model [4] , Hidden Markov Model (HMM) 

[5,6] , Autoregressive Moving-Average model (ARMA) [7] , Autore- 

gressive Integrated Moving Average Model (ARIMA) [8] , Mixture 

of Markov Chain [9,10] , and fuzzy-based estimation model [11] . In 

such approaches, the model structure (e.g., the number of mix- 

ture models) can be determined by model selection techniques 

and model parameters estimated via maximum likelihood algo- 

rithms. One representative example is the well-known expectation- 

maximization (EM) algorithm [21] . 

While HMM-based clustering [5,6,12,13] has been studied for 

the last decade, which is regarded as an important model-based 

approach for temporal data analysis, most of HMM-based cluster- 

ing algorithms still face the challenge that model selection and 

initialization sensitivity remains to be an unsolved problem. This 

is originally inherited from conventional partitioning and hierar- 

chical clustering approaches. Although many model selection tech- 

niques have been reported in the literature [22–28] , no one has 

been well accepted for general clustering. This is due to the fact 

that there exists no general and formal definition of what the “true 

clusters” are, and clustering algorithms intend to group the tar- 

get dataset with different aims of cluster analysis [29] . In prin- 

ciple, existing approaches of determining the number of clusters 

can be classified into two categories: validation index determi- 

nation and adaptive learning determination. In the first category, 

the number of clusters is externally determined by optimizing the 
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pre-defined criterion, such as Akaike Information Criterion (AIC) 

[22] , Bayesian Information Criterion (BIC) [23] , minimizing descrip- 

tion length [10] and minimization function for shape and tex- 

ture clustering [24] . Recent empirical studies on model selection 

[30,31] reveals, however, that such method either over-estimates 

or under-estimates the intrinsic number of clusters in reality. In 

the second category, clustering algorithm itself is able to gradually 

update the structure of clusters during an iterative learning pro- 

cess, and the number of clusters can be automatically determined 

until a stop criterion is reached. Typical examples include DBSCAN 

[25] , Adaptive K-means [26] , fuzzy adaptive clustering [27] , and 

adaptive fuzzy C-means clustering [28] . Although such approaches 

have shown promising results to an extent, most of them still suf- 

fer from the problem of initialization sensitivity, leading to higher 

computational cost in practical applications 

Ensemble learning techniques have been widely used in clus- 

tering [5,32–36] , in which the so-called clustering ensemble ap- 

proaches attempt to improve the robustness of clustering by com- 

bining multiple clustering solutions into a single consolidated clus- 

tering ensemble. Such application normally achieves better results 

in terms of average performance among given clustering solutions, 

leading to a potential solution for the initialization problem. Al- 

though such techniques have been intensively researched and de- 

veloped, how to harmonically combine the various clustering solu- 

tions into an optimal consensus without any prior information is 

still a serious challenge [37] . 

Built upon our previous work [15,16,38] , we propose a HMM- 

based ensemble for temporal data clustering, in which the ensem- 

ble technique is used to tackle the initialization problem caused 

by HMM-based K-models during the initial clustering analysis. In 

comparison with the existing state of the arts, our proposed pro- 

vides an optimal reconciliation for input partitions through a so- 

called bi-weighting scheme, where the two sets of weights for the 

partitions and clusters are assigned in accordance with their level 

of importance during the learning process throughout all itera- 

tions. By applying the DSPA ( dendrogram-based similarity partition- 

ing algorithm) consensus function [15] , the proposed bi-weighting 

scheme is able to optimize the final partition with intrinsic num- 

ber of clusters and hence improves the temporal data clustering 

performances. To this end, our contribution can be highlighted as: 

(i) We propose an improved HMM-based clustering ensemble and 

hence provide a new solution for the initialization problem and 

model selection problem encountered by all temporal data clus- 

tering algorithms as well as their applications; (ii) We introduce a 

novel optimization scheme to transform the input partitions into a 

single consolidated clustering solution, where level of importance 

is considered and adapted during the learning and transformation 

process by a so-called bi-weighting scheme. 

The rest of paper is organized as follows. Section 2 reviews 

HMM-based clustering as background knowledge of designing our 

approach. Section 3 describes our approach, together with the de- 

tail of major techniques developed. Section 4 reports the exper- 

imental results on various temporal datasets. Section 5 discusses 

the issues related to our approach, and finally, the conclusions are 

drawn in Section 6 . 

2. Overview of HMM-based clustering 

To pave the way for our proposed algorithm, we overview 

the HMM-based representation of temporal data and the existing 

HMM-based clustering algorithms in this section. 

2.1. HMM-based representation of temporal data and K-models 

HMM describes an unobservable stochastic process consisting of 

a sequence of states { q t } T t=1 
with q t ∈ {1, 2, ..., S }, each of which is 

related to another stochastic process that generates observations of 

temporal data x = { o t } T t=1 . Initially, an observation o 1 is generated 

with an emission probability b i ( o 1 ) = p( o 1 | q s = i ) at the state i , 

which is selected according to the initial probability πi = p(i = 1) . 

The next state j is determined by the state transition probability 

a ij , and an observation o 2 is also generated based on an emission 

probability b j ( o 2 ) = p( o 2 | q s = j) at the state j . The process repeats 

until a sequence of observations { o t } T t=1 are generated. Essentially, 

the entire process produces a sequence of observations instead 

of the states, from which the name ‘hidden’ is drawn. The com- 

plete set of HMM parameters is described by a triplet λ = { π, A, B } , 
where π = { πi } S i =1 

,A = { a i j } S,S i =1 , j=1 
,B = { b i } S i =1 

. For continuously val- 

ued temporal datasets such as time series, it is normally assumed 

that each state generates observations according to a multivariate 

Gaussian distribution, due to fact of that there are efficient pa- 

rameter estimators for this special case. However, such assump- 

tion does not hold true for all kinds of temporal data, and as a 

result, extensive research [39–42] has been carried out for non- 

Gaussian emission distributions. Without prior information of the 

target datasets, however, the choice of emission distributions is un- 

certain, and hence this remains to be an unsolved problem. 

In our approach, we assume that the emission distribution of 

continuously valued temporal data is modelled as a single Gaus- 

sian distribution b i = { μi , σ
2 
i 
} . Extensive experiments and analysis 

support that such a single Gaussian emission distribution can re- 

duce the computational cost, and prevent the risk of over-fitting 

for HMM modelling. Correspondingly, a temporal dataset can be 

modelled as a set of K HMMs � = { λ1 , λ2 , .... λK } with S states 

based on single Gaussian distributed observations, where λk rep- 

resents a cluster of temporal data with three model parameters: 

(i) An initial state distribution π k = { π k 
i 
} S 

i =1 
, (ii) A state transi- 

tion probability matrix A 

k = { a k 
i j 
} S,S 

i =1 , j=1 
, (iii) S observation emis- 

sions in single Gaussian with mean: { μk 
1 
, μk 

2 
, . . . μk 

S 
} and variance: 

{ σ k 2 
1 

, σ k 2 
2 

, . . . σ k 2 
S 

} . 
As a general form of K-means, HMM-based K-models [6] model 

the entire dataset X = { x n } N n =1 
as a set of K HMMs { λk } k k =1 

with 

S states. The parameters of K HMMs with pre-defined number of 

states S are initially estimated on K data points, which are ran- 

domly selected from the target dataset without any replacement. A 

log-likelihood of each data point under K HMMs is then calculated 

by the Forward and Backward algorithms [43,44] , and each of them 

is assigned to the HMM with maximum log-likelihood. After that, 

the parameters of K HMMs are re-estimated on the corresponding 

cluster of data points by EM algorithm [21] . The entire process is 

repeated until the cluster memberships no longer change. 

2.2. HMM-based agglomerative clustering 

Originally proposed by Smyth [12] , HMM-based agglomerative 

clustering incorporates an adaptive training process in which each 

data item is initially treated as a cluster represented by a single- 

ton HMM, and N singleton HMMs { λN } N n =1 
are trained on the en- 

tire dataset X = { x n } N n=1 
. The closest pair of clusters, indicated by i 

and j , are merged as a new cluster k represented by a composite 

model, and the composite model is represented by the parameters 

of its children models λk = { λi , λ j } . This process is repeated until 

a stop criterion such as pre-defined number of clusters is reached. 

During each iteration, the closest pair of cluster i and j are chosen 

to merged according to Kullback–Leibler (KL) distance measurement 

[45] : 

D KL ( λi , λ j ) = 

∑ 

x 

p( λi ) 
[
log p(x | λi ) − log p(x 

∣∣λ j ) 
]

(1) 

In our approach, the distance between two clusters i and j is 

defined as a symmetric version of the KL distance, details of which 
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