
Pattern Recognition 76 (2018) 349–366

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Asymmetric learning vector quantization for efficient nearest neighbor

classification in dynamic time warping spaces

Brijnesh J. Jain

∗, David Schultz

TU Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

a r t i c l e i n f o

Article history:

Received 26 May 2017

Revised 4 September 2017

Accepted 23 October 2017

Available online 7 November 2017

Keywords:

Learning vector quantization

Time series

Dynamic time warping

a b s t r a c t

The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the

most popular approaches in time series classification. This method suffers from high storage and com-

putation requirements for large training sets. As a solution to both drawbacks, this article extends learn-

ing vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed generic LVQ scheme

uses asymmetric weighted averaging as update rule. We theoretically justify the asymmetric LVQ scheme

via subgradient techniques and by the margin-growth principle. In addition, we show that the decision

boundary of two prototypes from different classes is piecewise quadratic. Empirical results exhibited su-

perior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype genera-

tion methods for nearest neighbor classification.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The nearest neighbor (NN) classifier endowed with the dynamic

time warping (DTW) distance is one of the most popular meth-

ods in time series classification [10,48] . Application examples in-

clude electrocardiogram frame classification [17] , gesture recogni-

tion [2,36] , speech recognition [27] , and voice recognition [26] .

Two disadvantages of the naive NN method are high storage

and computation requirements. Storage requirements are high, be-

cause the entire training set needs to be retained for being able to

execute its classification rule. Computation requirements are high,

because classifying a test example demands calculation of DTW

distances between the test and all training examples. One solution

to both limitations are data reduction methods that infer a small

set of prototypes from the training examples [46] . These methods

aim at scaling down storage and computational complexity, while

maintaining high classification accuracy. Two common reduction

approaches are prototype selection [11] and prototype generation

[44] . Prototype selection methods choose a suitable subset of the

original training set. Examples of prototype selection algorithms

that have been applied in DTW spaces are min-max centroids [33] ,

k-Medoids [20,31,32] and the DROP-family [46,47] .

Prototype generation methods infer new artificial prototypes

from the training examples. We distinguish between three

∗ Corresponding author.

E-mail address: jain@dai-labor.de (B.J. Jain).

directions to prototype generation methods for NN classification in

DTW spaces:

1. Unsupervised prototype generation [1,29,32–34,39,43,45] : Unsu-

pervised methods cluster the training examples of every class

separately. Centroids of the clusters are computed by averaging

warped time series, which is non-trivial as compared to averag-

ing vectors [30,40] . The resulting centroids form a reduced set

of prototypes for NN classification.

2. Symmetric LVQ1 [42] : Symmetric LVQ1 is a supervised prototype

generation method that extends the LVQ1 algorithm [22] from

Euclidean to DTW spaces by using a symmetric update rule.

Starting with an initial set of prototypes, LVQ1 repeatedly ap-

plies the following steps: (i) select the next training example x ;

(ii) identify the prototype p closest to x ; and (iii)“attract” p to x

if the class labels of both agree, otherwise “repel” p from x .

3. Relational LVQ [12,14,15,25] : Relational LVQ methods extend

state-of-the-art LVQ methods from Euclidean spaces to pseudo-

Euclidean spaces via pairwise dissimilarity data. An important

example that has been extended to relational learning is gener-

alized LVQ (GLVQ) [38]

An empirical comparison of different methods across the three

directions is missing. Consequently, it is unclear which direction

is best suited for which situation. Relational methods are theoreti-

cally best developed and the most general approach, because they

can be applied to any distance space.

Unsupervised methods are currently the most popular direc-

tion in DTW spaces. Their usefulness has been first demon-

strated in the 1970ies for speech recognition [33,34] and recently

https://doi.org/10.1016/j.patcog.2017.10.029

0031-3203/© 2017 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.patcog.2017.10.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.10.029&domain=pdf
mailto:jain@dai-labor.de
https://doi.org/10.1016/j.patcog.2017.10.029

350 B.J. Jain, D. Schultz / Pattern Recognition 76 (2018) 349–366

confirmed for general time series classification tasks [32,39] . More-

over, empirical result showed that k-means together with the DBA

algorithm for time series averaging exhibited the best generaliza-

tion performance over different prototype selection and unsuper-

vised prototype generation methods [31,32] . A limitation of unsu-

pervised methods is that they learn prototypes of every class sep-

arately without considering the decision boundaries to the respec-

tive neighboring classes.

In contrast to unsupervised methods, supervised approaches

aim at directly approximating the true but unknown decision

boundaries. As far as we know, symmetric LVQ1 [42] is the only

existing supervised prototype generation method that operates in

DTW spaces. However, there are four major issues related to sym-

metric LVQ1:

1. The update rule of the Euclidean LVQ1 method can be formu-

lated as a weighted average of two points. In DTW spaces there

are two common forms of averages: a symmetric and an asym-

metric form [23,40] . The symmetric form computes the arith-

metic mean of warped time series, whereas the asymmetric

form is a minimizer of a sum of squared DTW distance criterion

[18,40] . The asymmetric mean is theoretically better grounded

than the symmetric mean [40] and exhibited superior perfor-

mance in unsupervised learning [30,41] .

2. A basic principle of LVQ methods in Euclidean spaces is to at-

tract a selected prototype p to the current input x if the class

labels of both agree, otherwise repel p from x . We call this

principle the margin-growth principle. Symmetric LVQ1 in DTW

spaces emulates the Euclidean LVQ1 update rule but in fact

lacks a theoretical guarantee for satisfying the margin-growth

principle.

3. Symmetric LVQ1 has been proposed as a heuristic without ex-

plicit link to a cost function. It extends the first and simplest

LVQ variant formulated in Euclidean spaces [22] . The Euclidean

LVQ1 showed unsatisfactory generalization performance, slow

convergence, and numerical instabilities. Improved methods

such as GLVQ define explicit cost functions that are minimized

by stochastic gradient descent [38] .

4. As we will show in Section 3 , it is possible to extend cost-

based LVQ methods such as GLVQ from Euclidean spaces to

DTW spaces using symmetric update rules. Since a theoreti-

cal foundation is missing, it is unclear whether and according

to which principles symmetric updating minimizes a cost func-

tion.

Due to the better theoretical foundation and the above four is-

sues, it seems natural to ask whether asymmetric extensions of

LVQ methods are beneficial for supervised prototype generation in

DTW spaces.

The contributions of this article are as follows:

1. We propose a generic asymmetric LVQ scheme for DTW spaces.

Under mild assumptions, every Euclidean LVQ algorithm can be

directly extended to DTW spaces. As examples, we derive asym-

metric versions of LVQ1 and GLVQ.

2. In a theoretical analysis, we first show that the decision bound-

ary defined by two prototypes from different classes is piece-

wise quadratic. Then we relate asymmetric LVQ to stochastic

subgradient methods and prove that asymmetric LVQ satisfies

the margin-growth principle almost everywhere.

3. In experiments, we compare the performance of the proposed

asymmetric LVQ1 and GLVQ method against prototype gen-

eration methods from the above mentioned three directions.

The experiments fill the gap of a missing comprehensive study

of the performance of different prototype generation methods

across different directions for nearest neighbor classification.

The main finding is that asymmetric GLVQ best trades classi-

fication accuracy against computation time by a large margin.

The implications of this contribution are twofold: First, asym-

metric GLVQ is well suited for online settings and in situations

where storage and computation requirements are an issue. Sec-

ond, the generic asymmetric LVQ scheme can serve as a blueprint

for directly extending unsupervised prototype learning methods to

DTW spaces, such as vector quantization, self-organizing maps, and

neural gas.

The rest of this paper is structured as follows: Section 2 in-

troduces LVQ in Euclidean space. Section 3 proposes asymmetric

LVQ for DTW spaces. Section 4 presents the theoretical results and

Section 5 discusses experiments. Finally, Section 6 concludes with

a summary of the main results and an outlook to further research.

2. Learning vector quantization

This section introduces learning vector quantization in Eu-

clidean spaces in such a way that most concepts can be directly

extended to other distance spaces.

2.1. Nearest neighbor classification

Let (X , δ) be a distance space with distance function δ : X ×
X → R ≥0 . Furthermore, let Y = { 1 , . . . , C } be a set consisting of C

class labels. We assume that there is an unknown labeling func-

tion

� : X → Y, x �→ � (x)

that assigns a class label � (x) ∈ Y to every element x ∈ X . A nearest

neighbor classifier approximates the unknown function � by using

a set C = { (p 1 , z 1) , . . . , (p K , z K)) } of K reference elements p k ∈ X

with class labels z k = � (p k) . The set C is called codebook and the

elements p k are the prototypes . We demand that there is at least

one prototype for every class, that is Y = { z 1 , . . . , z K } . For the sake

of convenience, we occasionally write p ∈ C instead of (p, z) ∈ C.

Suppose that

p ∗(x) ∈ argmin p∈C δ(p, x)

denotes a nearest prototype p ∗(x) ∈ C of x ∈ X . Then the near-

est neighbor classifier with respect to codebook C is a function

h C : X → Y of the form h C (x) = � (p ∗(x)) . The function h C (x) as-

signs element x to the class of its nearest prototype p ∗ (x). To en-

sure that h C is well-defined, we assume that p ∗ (x) is a determinis-

tic selection in case of ties (the nearest prototype is not uniquely

determined).

2.2. Learning vector quantization

Let X = R

d be the d -dimensional Euclidean space endowed

with the Euclidean metric δ(p, x) = ‖ p − x ‖ . Suppose that D =

{ (x 1 , y 1) , . . . , (x N , y N) } ⊆ X × Y is a training set. The goal of LVQ is

to learn a codebook C of size K 	 N on the basis of the training set

D such that the corresponding nearest neighbor classifier h C mini-

mizes the expected classification error on unseen data.

Learning can be performed in batch or incremental (stochastic)

mode. Here, we focus on incremental learning. During learning, the

prototypes p are adjusted in accordance with the distortion

D x (p) = δ2 (p, x) ,

where x is the current input example. The distortion D x (p) is dif-

ferentiable as a function of p . Its gradient is given by ∇D x (p) =

2(p − x) . Algorithm 1 outlines the generic LVQ algorithm.

To explain Algorithm 1 , we assume that p = p k and p ′ = p ′
k
. In

every iteration, Algorithm 1 first randomly selects a training ex-

ample (x, z) ∈ D and then updates the codebook. Update rule (1)

moves the current prototype p to a new prototype p ′ in a direc-

tion defined by the gradient ∇D x (p) = 2(p − x) . The learning rate

Download English Version:

https://daneshyari.com/en/article/6939473

Download Persian Version:

https://daneshyari.com/article/6939473

Daneshyari.com

https://daneshyari.com/en/article/6939473
https://daneshyari.com/article/6939473
https://daneshyari.com

