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a b s t r a c t 

The nearest neighbor method together with the dynamic time warping (DTW) distance is one of the 

most popular approaches in time series classification. This method suffers from high storage and com- 

putation requirements for large training sets. As a solution to both drawbacks, this article extends learn- 

ing vector quantization (LVQ) from Euclidean spaces to DTW spaces. The proposed generic LVQ scheme 

uses asymmetric weighted averaging as update rule. We theoretically justify the asymmetric LVQ scheme 

via subgradient techniques and by the margin-growth principle. In addition, we show that the decision 

boundary of two prototypes from different classes is piecewise quadratic. Empirical results exhibited su- 

perior performance of asymmetric generalized LVQ (GLVQ) over other state-of-the-art prototype genera- 

tion methods for nearest neighbor classification. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The nearest neighbor (NN) classifier endowed with the dynamic 

time warping (DTW) distance is one of the most popular meth- 

ods in time series classification [10,48] . Application examples in- 

clude electrocardiogram frame classification [17] , gesture recogni- 

tion [2,36] , speech recognition [27] , and voice recognition [26] . 

Two disadvantages of the naive NN method are high storage 

and computation requirements. Storage requirements are high, be- 

cause the entire training set needs to be retained for being able to 

execute its classification rule. Computation requirements are high, 

because classifying a test example demands calculation of DTW 

distances between the test and all training examples. One solution 

to both limitations are data reduction methods that infer a small 

set of prototypes from the training examples [46] . These methods 

aim at scaling down storage and computational complexity, while 

maintaining high classification accuracy. Two common reduction 

approaches are prototype selection [11] and prototype generation 

[44] . Prototype selection methods choose a suitable subset of the 

original training set. Examples of prototype selection algorithms 

that have been applied in DTW spaces are min-max centroids [33] , 

k-Medoids [20,31,32] and the DROP-family [46,47] . 

Prototype generation methods infer new artificial prototypes 

from the training examples. We distinguish between three 
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directions to prototype generation methods for NN classification in 

DTW spaces: 

1. Unsupervised prototype generation [1,29,32–34,39,43,45] : Unsu- 

pervised methods cluster the training examples of every class 

separately. Centroids of the clusters are computed by averaging 

warped time series, which is non-trivial as compared to averag- 

ing vectors [30,40] . The resulting centroids form a reduced set 

of prototypes for NN classification. 

2. Symmetric LVQ1 [42] : Symmetric LVQ1 is a supervised prototype 

generation method that extends the LVQ1 algorithm [22] from 

Euclidean to DTW spaces by using a symmetric update rule. 

Starting with an initial set of prototypes, LVQ1 repeatedly ap- 

plies the following steps: (i) select the next training example x ; 

(ii) identify the prototype p closest to x ; and (iii)“attract” p to x 

if the class labels of both agree, otherwise “repel” p from x . 

3. Relational LVQ [12,14,15,25] : Relational LVQ methods extend 

state-of-the-art LVQ methods from Euclidean spaces to pseudo- 

Euclidean spaces via pairwise dissimilarity data. An important 

example that has been extended to relational learning is gener- 

alized LVQ (GLVQ) [38] 

An empirical comparison of different methods across the three 

directions is missing. Consequently, it is unclear which direction 

is best suited for which situation. Relational methods are theoreti- 

cally best developed and the most general approach, because they 

can be applied to any distance space. 

Unsupervised methods are currently the most popular direc- 

tion in DTW spaces. Their usefulness has been first demon- 

strated in the 1970ies for speech recognition [33,34] and recently 
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confirmed for general time series classification tasks [32,39] . More- 

over, empirical result showed that k-means together with the DBA 

algorithm for time series averaging exhibited the best generaliza- 

tion performance over different prototype selection and unsuper- 

vised prototype generation methods [31,32] . A limitation of unsu- 

pervised methods is that they learn prototypes of every class sep- 

arately without considering the decision boundaries to the respec- 

tive neighboring classes. 

In contrast to unsupervised methods, supervised approaches 

aim at directly approximating the true but unknown decision 

boundaries. As far as we know, symmetric LVQ1 [42] is the only 

existing supervised prototype generation method that operates in 

DTW spaces. However, there are four major issues related to sym- 

metric LVQ1: 

1. The update rule of the Euclidean LVQ1 method can be formu- 

lated as a weighted average of two points. In DTW spaces there 

are two common forms of averages: a symmetric and an asym- 

metric form [23,40] . The symmetric form computes the arith- 

metic mean of warped time series, whereas the asymmetric 

form is a minimizer of a sum of squared DTW distance criterion 

[18,40] . The asymmetric mean is theoretically better grounded 

than the symmetric mean [40] and exhibited superior perfor- 

mance in unsupervised learning [30,41] . 

2. A basic principle of LVQ methods in Euclidean spaces is to at- 

tract a selected prototype p to the current input x if the class 

labels of both agree, otherwise repel p from x . We call this 

principle the margin-growth principle. Symmetric LVQ1 in DTW 

spaces emulates the Euclidean LVQ1 update rule but in fact 

lacks a theoretical guarantee for satisfying the margin-growth 

principle. 

3. Symmetric LVQ1 has been proposed as a heuristic without ex- 

plicit link to a cost function. It extends the first and simplest 

LVQ variant formulated in Euclidean spaces [22] . The Euclidean 

LVQ1 showed unsatisfactory generalization performance, slow 

convergence, and numerical instabilities. Improved methods 

such as GLVQ define explicit cost functions that are minimized 

by stochastic gradient descent [38] . 

4. As we will show in Section 3 , it is possible to extend cost- 

based LVQ methods such as GLVQ from Euclidean spaces to 

DTW spaces using symmetric update rules. Since a theoreti- 

cal foundation is missing, it is unclear whether and according 

to which principles symmetric updating minimizes a cost func- 

tion. 

Due to the better theoretical foundation and the above four is- 

sues, it seems natural to ask whether asymmetric extensions of 

LVQ methods are beneficial for supervised prototype generation in 

DTW spaces. 

The contributions of this article are as follows: 

1. We propose a generic asymmetric LVQ scheme for DTW spaces. 

Under mild assumptions, every Euclidean LVQ algorithm can be 

directly extended to DTW spaces. As examples, we derive asym- 

metric versions of LVQ1 and GLVQ. 

2. In a theoretical analysis, we first show that the decision bound- 

ary defined by two prototypes from different classes is piece- 

wise quadratic. Then we relate asymmetric LVQ to stochastic 

subgradient methods and prove that asymmetric LVQ satisfies 

the margin-growth principle almost everywhere. 

3. In experiments, we compare the performance of the proposed 

asymmetric LVQ1 and GLVQ method against prototype gen- 

eration methods from the above mentioned three directions. 

The experiments fill the gap of a missing comprehensive study 

of the performance of different prototype generation methods 

across different directions for nearest neighbor classification. 

The main finding is that asymmetric GLVQ best trades classi- 

fication accuracy against computation time by a large margin. 

The implications of this contribution are twofold: First, asym- 

metric GLVQ is well suited for online settings and in situations 

where storage and computation requirements are an issue. Sec- 

ond, the generic asymmetric LVQ scheme can serve as a blueprint 

for directly extending unsupervised prototype learning methods to 

DTW spaces, such as vector quantization, self-organizing maps, and 

neural gas. 

The rest of this paper is structured as follows: Section 2 in- 

troduces LVQ in Euclidean space. Section 3 proposes asymmetric 

LVQ for DTW spaces. Section 4 presents the theoretical results and 

Section 5 discusses experiments. Finally, Section 6 concludes with 

a summary of the main results and an outlook to further research. 

2. Learning vector quantization 

This section introduces learning vector quantization in Eu- 

clidean spaces in such a way that most concepts can be directly 

extended to other distance spaces. 

2.1. Nearest neighbor classification 

Let ( X , δ) be a distance space with distance function δ : X ×
X → R ≥0 . Furthermore, let Y = { 1 , . . . , C } be a set consisting of C 

class labels. We assume that there is an unknown labeling func- 

tion 

� : X → Y, x �→ � (x ) 

that assigns a class label � (x ) ∈ Y to every element x ∈ X . A nearest 

neighbor classifier approximates the unknown function � by using 

a set C = { ( p 1 , z 1 ) , . . . , ( p K , z K ) ) } of K reference elements p k ∈ X 

with class labels z k = � (p k ) . The set C is called codebook and the 

elements p k are the prototypes . We demand that there is at least 

one prototype for every class, that is Y = { z 1 , . . . , z K } . For the sake 

of convenience, we occasionally write p ∈ C instead of (p, z) ∈ C. 

Suppose that 

p ∗(x ) ∈ argmin p∈C δ(p, x ) 

denotes a nearest prototype p ∗(x ) ∈ C of x ∈ X . Then the near- 

est neighbor classifier with respect to codebook C is a function 

h C : X → Y of the form h C (x ) = � ( p ∗(x ) ) . The function h C (x ) as- 

signs element x to the class of its nearest prototype p ∗ ( x ). To en- 

sure that h C is well-defined, we assume that p ∗ ( x ) is a determinis- 

tic selection in case of ties (the nearest prototype is not uniquely 

determined). 

2.2. Learning vector quantization 

Let X = R 

d be the d -dimensional Euclidean space endowed 

with the Euclidean metric δ(p, x ) = ‖ p − x ‖ . Suppose that D = 

{ ( x 1 , y 1 ) , . . . , ( x N , y N ) } ⊆ X × Y is a training set. The goal of LVQ is 

to learn a codebook C of size K 	 N on the basis of the training set 

D such that the corresponding nearest neighbor classifier h C mini- 

mizes the expected classification error on unseen data. 

Learning can be performed in batch or incremental (stochastic) 

mode. Here, we focus on incremental learning. During learning, the 

prototypes p are adjusted in accordance with the distortion 

D x (p) = δ2 (p, x ) , 

where x is the current input example. The distortion D x ( p ) is dif- 

ferentiable as a function of p . Its gradient is given by ∇D x (p) = 

2(p − x ) . Algorithm 1 outlines the generic LVQ algorithm. 

To explain Algorithm 1 , we assume that p = p k and p ′ = p ′ 
k 
. In 

every iteration, Algorithm 1 first randomly selects a training ex- 

ample (x, z) ∈ D and then updates the codebook. Update rule (1) 

moves the current prototype p to a new prototype p ′ in a direc- 

tion defined by the gradient ∇D x (p) = 2(p − x ) . The learning rate 
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