
ARTICLE IN PRESS 

JID: PR [m5G; April 8, 2017;14:16 ] 

Pattern Recognition 0 0 0 (2017) 1–12 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Learning local metrics from pairwise similarity data 

Julien Bohné a , b , ∗, Yiming Ying 

c , Stéphane Gentric 

a , Massimiliano Pontil b , d 

a Safran Identity & Security, 11 boulevard Galliéni, 92130 Issy-les-Moulineaux, France 
b Department of Computer Science, University College London, London WC1E 6BT, UK 
c SUNY Albany, Department of Mathematics and Statistics, 1400 Washington Avenue, Albany, NY, 12222, USA 
d Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy 

a r t i c l e i n f o 

Article history: 

Received 22 July 2016 

Revised 13 March 2017 

Accepted 4 April 2017 

Available online xxx 

Keywords: 

Similarity function learning 

Local metric learning 

Nearest neighbors classification 

Face verification 

a b s t r a c t 

We study the problem of learning a similarity function from a set of binary labeled data pairs. A common 

approach is to learn a similarly function which is a bilinear form associated to the pair of data points. We 

argue that this class may be too restrictive when handling heterogeneous datasets. To overcome this lim- 

itation local metric learning techniques have been advocated in the literature. However, they are subject 

to certain constraints preventing their usage in many applications. For example, they require knowledge 

of the class label of the training points. In this paper, we present a local metric learning method, which 

overcomes these limitations. The method first initializes a Gaussian mixture model on the training data. 

Then it estimates a set of local metrics and simultaneously refines the mixture’s parameters. Finally, a 

similarity function is obtained by aggregating the local metrics. We also introduce a novel regularization 

term, which works well in a transfer learning setting. Our experiments show that the proposed method 

achieves state-of-the-art results on several real datasets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Metric learning is at the core of many applications and hence is 

a widely studied problem in machine learning. A popular class of 

similarity functions are linear metrics of the form (x i − x j ) 
� M(x i −

x j ) where x i and x j are two data points which we wish to com- 

pare and M is a positive semidefinite matrix (PSD). This approach 

has been shown to be quite effective on various tasks but suffers a 

strong limitation: it makes use of a single linear metric to compare 

data over all the input space. This simple approach might lead to 

unsatisfactory results when used on heterogeneous data. In princi- 

ple, one could use global metric learning with a nonlinear kernel 

to be able to address more complex data. However, finding the ap- 

propriate kernel may be challenging and this type of approach may 

be computationally expensive, especially at test time when speed 

matters the most. 

This observation is the root of development of local metric 

learning methods which combine several linear metrics to adapt 

the similarity function to the local specificities of the data. For il- 

lustrative purpose let us consider two examples. Each local metric 

is associated with a PSD matrix M i . If L i is a square root of M i , that 
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is M i = L i L 
� 
i 
, then the mapping x �→ L � 

i 
x is the feature vector asso- 

ciated with the i th local metric. These feature mappings may vary 

considerably across regions. For example, it is well known that in 

digit classification some digits are easily mistaken for another such 

as “1” and “7” or “3” and “8”, it seems therefore reasonable to re- 

duce the number of misclassification by focusing on different fea- 

tures to discriminate digits in the “1-7” region and in the “3-8”

one. Yet one more example, is face verification: should we put the 

emphasis on the very same features to compare two pictures of 

Caucasian males and two pictures of Asian females? We claim the 

answer is “no” and our experiments show that local metric learn- 

ing improves the performance for these two applications. 

Similarity functions can be employed in nearest neighbor clas- 

sifiers or to take decisions based on the thresholding of the sim- 

ilarity. Those two situations are different as the former depends 

only on the ranking of the nearest neighbors whereas the latter 

is concerned with the absolute meaning of the similarity. In this 

work we propose a flexible local metric learning method called 

Large Margin Local Metric Learning (LMLML) which can be em- 

ployed in both settings and can handle an arbitrarily large number 

of classes. Its training procedure does not need one to know the 

class labels but only a set of pairs labeled “similar” (both points 

belong to the same class) or “dissimilar” (the two points belong 

to different classes). Our method computes a set of local metrics 

which are combined into an adaptive similarity function with the 

help of a soft partitioning of the input space based on Gaussian 
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Mixture Models (GMM). The optimization of the local metrics is 

formulated as a convex problem which favors a large margin so- 

lution. The problem also involves a novel regularization term en- 

couraging matrices which are close to a simple baseline solution. 

Our experiments show that LMLML outperforms or matches state- 

of-the-art results on various datasets. 

The paper is organized in the following manner. In the 

next section we review related work. In Section 3 , we present 

our large margin local metric learning (LMLML) approach and 

in Section 4 we extend this method with a new regular- 

izer. Section 5 presents implementation details contributing to 

LMLML’s good performance which are demonstrated by experi- 

ments on both synthetic and real datasets in Section 6 . Finally, in 

Section 7 we summarize our findings. 

We note that this article is a longer version of the conference 

paper by the authors [1] which includes new methodological and 

experimental results. Specifically, (i) we provide a full optimization 

scheme which alternates gradient steps with respect to the local 

metrics and the GMM partitioning the feature space; (ii) we give a 

new formulation of the regularizer with no auxiliary variables; (iii) 

finally we present extended experiments on three additional real 

datasets and illustrate the benefit of the new regularizer for out of 

sample / transfer learning scenarios. 

2. Related work 

Metric learning has been the subject of several papers. Most of 

them deal with global metric learning; important developments in- 

clude ITML [2] , LDML [3] , LMNN [4] or DML_eig [5] . They all for- 

mulate metric learning as the optimization of an objective func- 

tion which decreases the distances of similar pairs while increas- 

ing those of dissimilar pairs. Some of these methods also include a 

regularization term which aims at alleviating the risk of overfitting. 

In practice, the discriminating property of the input features 

might vary between different neighborhoods, and thus a global 

metric cannot reflect the local specificities of the data. A more gen- 

eral approach is to learn a metric on each local neighborhood. This 

approach, which is often referred to as local metric learning , has 

been investigated from several angles. We briefly review some of 

the key developments below. 

Local metric learning has sometimes been linked to semi- 

supervised clustering such as in [6] where labeled data are used to 

find local transformations of the data points in order to improve a 

clustering process. This kind of method cannot compute similarity 

measures between pairs of never seen points which is the goal of 

our work. 

Metric learning is often used to improve nearest neighbors clas- 

sification. Several local metric learning algorithms have been de- 

veloped to improve nearest neighbors classifiers. Weinberger and 

Saul proposed an extension of LMNN to local metric (MM-LMNN 

[7] ), in which a specific metric is associated to each class and all 

the metrics are jointly learned to optimize a classification criterion. 

LMNN has also been extended to the setting of multi-tasks learn- 

ing [8] , where multiple metrics are jointly learned [9] . Our work 

can be considered to be a generalization of these methods as it 

uses a weighted combination metrics instead of activating a single 

metric for each comparison (see Section 3 ). 

KISSME [10] has also been extended to local metric in 

[11] where one KISSME metric is learned separately for each class. 

These class-specific metrics are averaged with a global one to alle- 

viate the risk of overfitting due to the fact that each metric might 

be learned using only a limited number of training samples. The 

method of GLML [12] employs local metrics to reduce the perfor- 

mance bias due to finite sampling using the class conditional prob- 

ability distribution. 

Most previously presented methods suffer from the same draw- 

back, namely they need enough training samples per class to es- 

timate the metrics. Therefore, they cannot directly be employed 

for applications in which there are a large number of classes with 

only few training data points in some classes. PLML, a local metric 

learning method based on finite number of linear metrics, is in- 

troduced in [13] to overcome this problem. The number of metrics 

is different from the number of classes and hence the method can 

scale to a larger number of classes. However, this method is specif- 

ically designed for nearest neighbors classification as it can only 

compute the similarity of pairs for which at least one data point is 

in the training set. This strongly limits the practical range of tasks 

that PLML can deal with. In particular, it prevents the application 

of PLML to the problem of face verification. 

All the methods mentioned above cannot deal with datasets 

having a large number of classes or are unable to compute a sim- 

ilarity function for pairs of two points which do not belong to the 

training dataset. Up to our knowledge LMLML [1] has been the first 

method to overcome these limitations. A further development is 

provided by CLML [14] ; it jointly learns many locally linear pro- 

jections such that any pair of projected points can be effectively 

compared using the Euclidean distance. Like in our work, the input 

space is soft-partitioned using a GMM but, as opposed to what we 

propose, the GMM parameters are learned during an initial step 

and are regarded as fixed during the projections optimization. 

At last we note that local metric is one way to extend linear 

metric but other directions have been explored to combined mul- 

tiple metrics. For example, [15] learns several metrics and selects 

the one giving the smallest distance for each comparison. They also 

show how to make video-to-video comparisons using additional la- 

tent variables to select which video frames to compare. 

3. Large margin local metric learning 

In this section we present our large margin local metric learn- 

ing (LMLML) approach. Let S n + be the set of n × n PSD matrices. 

The usual squared Mahalanobis distance associated with a matrix 

M ∈ S n + and evaluated on a pair of data points (x i , x j ) ∈ R 

n × R 

n is 

given by (x i − x j ) 
� M(x i − x j ) . In LMLML, the matrix M is replaced 

by a matrix-valued function M θ : R 

n × R 

n �→ S n + which is defined, 

for every (x i , x j ) ∈ R 

n × R 

n , as a convex combination of K + 1 ma- 

trices 

M θ (x i , x j ) = 

K ∑ 

k =0 

w 

k 
θ (x i , x j ) M k , (1) 

where w 

k 
θ
(x i , x j ) are nonnegative weights which will be defined 

below. The resulting similarity function is given, for every (x i , x j ) ∈ 

R 

n × R 

n , by the formula 

d 2 (x i , x j , M θ ) = (x i − x j ) 
� M θ (x i , x j )(x i − x j ) . (2) 

The smoothness of the matrix-valued function M is a desirable 

property because it guarantees that the similarity function is lo- 

cal and prevents abrupt changes which, as we observe in our ex- 

periments below, degrade performance. In order to ensure this 

property, we use weights w 

k 
θ

which vary smoothly across the 

input space. As we want the similarity function to be local, it 

makes sense to use a soft partitioning of the input space to com- 

pute the weights w 

k 
θ
(x i , x j ) . To this end, we employ a Gaussian 

Mixture Model (GMM) with K components of parameters θ = 

{ αk , μk , S k } 1 ≤k ≤K , where αk are the prior of each Gaussian and μk 

and S k the corresponding means and covariance matrices, respec- 

tively. The weights are defined by the formula 

w 

k 
θ (x i , x j ) = 

{
β if k = 0 

P (k | x i , θ ) + P (k | x j , θ ) otherwise 
(3) 
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