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a b s t r a c t

In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA
is prone to outliers included in the training set. Different from the other alternatives which commonly
replace L2-norm by other distance measures, the proposed method alleviates the negative effect of
outliers using the characteristic of the generalized mean keeping the use of the Euclidean distance. The
optimization problem based on the generalized mean is solved by a novel method. We also present a
generalized sample mean, which is a generalization of the sample mean, to estimate a robust mean in the
presence of outliers. The proposed method shows better or equivalent performance than the conven-
tional PCAs in various problems such as face reconstruction, clustering, and object categorization.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dimensionality reduction [1] is a classical problem in pattern
recognition and machine learning societies, and numerous methods
have been proposed to reduce the data dimensionality. Principal
component analysis (PCA) [2] is one of the most popular unsu-
pervised dimensionality reduction methods which tries to find a
subspace where the average reconstruction error of the training
data is minimized. It is useful in representation of input data in a
low dimensional space and it has been successfully applied to face
recognition [3,4], visual tracking [5], clustering [6,7], and so on.

When automatically collecting a large data set, outliers may be
contained in the collected data since it is very difficult to examine
whether each sample of data is outlier or not [8]. It is well known
that, in this case, the conventional PCA is sensitive to outliers
because it minimizes the reconstruction errors of training data in
terms of the mean squared error and a few outliers with large errors
dominate the objective function. This problem has been addressed
in many studies [8–16]. Among them, some studies utilized L1-norm
instead of L2-norm in the formulation of optimization problem to
improve the robustness of PCA against outliers [9–11]. In [9], the
cost function for optimization was constructed based on L1-norm
and a convex programming was employed to solve the problem. R1-
PCA [10] was presented to obtain a solution with the rotational
invariance, which is a fundamental desirable property for learning
algorithms [17]. In [11], PCA-L1 was proposed, which maximizes an
L1 dispersion in the reduced space and an extension of PCA-L1 using
Lp-norm with arbitrary p was also proposed in [14]. Other method

utilizing Lp-norm was also presented in [15]. On the other hand,
some of robust PCAs were recently developed using information
theoretic measures [12,13]. He et al. [12] proposed MaxEnt-PCA
which finds a subspace where Renyi's quadratic entropy [18] is
maximized. Renyi's entropy was estimated by a non-parametric
Parzen window technique. In [13], HQ-PCA was developed based on
the maximum correntropy criterion [19].

In this paper, we propose a new robust PCA method based on
the power mean or the generalized mean [20], which can become
the arithmetic, geometric, and harmonic means depending on the
value of its parameter. The proposed method, PCA-GM, is a gen-
eralization of the conventional PCA by replacing the arithmetic
mean with the generalized mean. The proposed method can
effectively prevent outliers from dominating objective function by
controlling the parameter in the generalized mean. Moreover, it is
rotational invariant because it still uses the Euclidean distance as
the distance measure between data samples. In doing so, we also
propose a generalized sample mean, which is an enhancement of
the conventional algebraic sample mean against outliers to address
the problem that the sample mean is easily affected by outliers. It is
used in the proposed PCA-GM instead of the arithmetic mean. The
optimization problems based on the generalized mean are effi-
ciently solved using a mathematical property of the generalized
mean. Recently, Candés et al. proposed a robust PCA [21], which is
sometimes referred to as RPCA in the literature, where data matrix
is tried to be represented as a sum of a low rank matrix, which
corresponds to reconstructions of data, and a sparse matrix, which
corresponds to reconstruction errors different from the methods
mentioned above. It can model pixel-wise noise effectively using
the sparse matrix, thus it has been known that RPCA is useful in the
applications such as background modeling from surveillance video
and removing shadows and specularities from face images [21] by
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using each element in the reconstruction error vector (the column
of the sparse matrix). On the other hand, in this paper, we will
utilize distance metric in removing the effect of outliers like the
previously mentioned methods, and an entire sample is considered
as an outlier if it has a large norm of the reconstruction error vector.

The remainder of this paper is organized as follows. Section 2
briefly introduces PCA and the state-of-the-art robust PCAs. The
proposed method is described in Section 3. It is demonstrated in
Section 4 that the proposed method gives better performances in
face reconstruction and clustering problems than other variants of
PCA. Finally, Section 5 concludes this paper.

2. PCA and robust PCAs

Let us consider a training set of N n-dimensional samples
lbracesupsubxi
� �N

i ¼ 1. Assuming that the samples have zero-mean,
PCA is to find an orthonormal projection matrix WARn�m ðm⪡nÞ
by which the projected samples yi ¼WTxi

n oN

i ¼ 1
have the max-

imum variance in the reduce space. It is formulated as follows:

WPCA ¼ arg max
W

trðWTSWÞ;

where S¼ 1
N

PN
i ¼ 1 xixT

i is a sample covariance matrix and trðAÞ is
the trace of a square matrix A. The projection matrix WPCA can be
also found from the viewpoint of projection errors, i.e., it mini-
mizes the average of the squared projection errors or reconstruc-
tion errors. Mathematically, it is represented as the optimization
problem minimizing the following cost function:

JL2 ðWÞ ¼ 1
N

XN
i ¼ 1

Jxi�WWTxi J22;

where JxJ2 is the L2-norm of a vector x. The two optimization
problems are equivalent and easily solved by obtaining the m
eigenvectors associated with the m largest eigenvalues of S.
Although PCA is simple and powerful, it is prone to outliers [8,9]
because JL2 ðWÞ is based on the mean squared reconstruction error.
To learn a subspace robust to outliers, Ke and Kanade [9] proposed
to minimize an L1-norm based objective function as follows:

JL1 ðWÞ ¼ 1
N

XN
i ¼ 1

Jxi�WWTxi J1;

where JxJ1 is the L1-norm of a vector x. They also present an
iterative method to obtain the solution for minimizing JL1 ðWÞ.

Although L1-PCA minimizing JL1 ðWÞ can relieve the negative
effect of outliers, it is not invariant to rotations. In [10], Ding et al.
proposed R1-PCA, which is rotational invariant, at the same time is
robust to outliers. It is to minimize the following objective func-
tion:

JR1
ðWÞ ¼

XN
i ¼ 1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i xi�xT

i WWTxi

q� �
;

where ρð�Þ is a generic loss function and the Cauchy function or
Huber's M-estimator [22] was used for ρð�Þ in [10]. Huber's M-
estimator ρHðsÞ is defined as

ρHðsÞ ¼
s2 if j sjrc;

2cj sj �c2 otherwise

(
ð1Þ

where c is the cutoff parameter that controls the regularization
effect of weights in a weighted covariance matrix. Note that ρHðsÞ
becomes a quadratic or a linear function of j sj depending on the
value of s. The solution for minimizing JR1

ðWÞ was obtained by
performing a subspace iteration algorithm [23].

On the other hand, PCA-L1 was developed in [11] motivated by
the duality between maximizing variance and minimizing

reconstruction error. It maximizes an L1 dispersion among the
projected samples,

PN
i ¼ 1 JWTxi J1. A novel and efficient method

for maximizing the L1 dispersion was also presented in [11]. The
method allows PCA-L1 to be performed by much less computa-
tional effort than R1-PCA.

HQ-PCA is formulated based on the maximum correntropy
criterion in terms of information theoretic learning. Without the
zero-mean assumption, which is necessary in other variants of
PCA, HQ-PCA maximizes the correntropy estimated between a set
of training samples xif gNi ¼ 1 and the set of their reconstructed
samples Wyiþm

� �N
i ¼ 1, where m is a data mean. Mathematically,

HQ-PCA tries to maximize the following objective function:

arg max
W;m

XN
i ¼ 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i x i�xT

i WWTx i

q� �
; ð2Þ

where gðxÞ ¼ expð�x2=2σ2Þ is the Gaussian kernel and x i ¼ xi�m.
Note that HQ-PCA finds a data mean as well as a projection matrix.
Using the Welsch M-estimator ρW ðxÞ ¼ 1�gðxÞ, HQ-PCA is regar-
ded as a robust M-estimator formulation because it is equivalent
to finding WH and mH that minimize the following objective
function:

JHQ ðW;mÞ ¼
XN
i ¼ 1

ρW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i x i�xT

i WWTx i

q� �
: ð3Þ

In [13], the optimization problem in (2) was effectively solved in the
half-quadratic optimization framework, which is often used to address
nonlinear optimization problems in information theoretic learning.

3. Robust principal component analysis based on generalized
mean

3.1. Generalized mean for positive numbers

For a pa0, the generalized mean or power mean Mp of f
ai40; i¼ 1;…;Ng [20] is defined as

Mp a1;…; aNf g ¼ 1
N

XN
i ¼ 1

api

 !1=p

:

The arithmetic mean, the geometric mean, and the harmonic mean
are special cases of the generalized mean when p¼ 1; p-0, and
p¼ �1, respectively. Furthermore, the maximum and the minimum
values of the numbers can also be obtained from the generalizedmean
by making p-1 and p-�1, respectively. Note that as p decreases
(increases), the generalized mean is more affected by the smaller
(larger) numbers than the larger (smaller) ones, i.e., controlling p
makes it possible to adjust the contribution of each number to the
generalized mean. This characteristic is useful in the situation where
data samples should be differently handled according to their impor-
tance, for example, when outliers are contained in the training set.

In [24], it was shown that the generalized mean of a set of
positive numbers can be expressed by a nonnegative linear com-
bination of the elements in the set and, in this paper, it is further
simplified as follows:XK
i ¼ 1

api ¼ b1a1þ⋯þbKaK

bi ¼ ap�1
i ; i¼ 1;…;K : ð4Þ

Note that each weight bi has the same value of 1 if p¼ 1, where the
generalized mean becomes the arithmetic mean. It is also noted
that, if p is less than one, the weight bi increases as ai decreases.
This means that, when po1, the generalized mean is more
influenced by the small numbers in aif gKi ¼ 1, and the extent of the
influence increases as p decreases. This equation plays an
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