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Mixture of regressors (MoR) is a widely used regression approach for approximating nonlinear mappings
between input and target outputs. However, existing learning procedures for MoR are prone to over-
fitting when only limited amounts of training data are available. To address this problem, we propose a
new mixture regression model, named mixture of grouped regressors (MoGR). It partitions the individual
regressors in the model into a set of groups, where the parameters of the regressors within each group
are encouraged to take on similar values. As the parameters for each local regressor are learned using all
data within a group, they tend to be better conditioned and more robust to noise in the training data.
Extensive experiments on real-world head pose and gaze data demonstrate the benefits of our proposed

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Regression is the process of learning a mapping function from
input to output variables, such that the target output can be pre-
dicted through the learned mapping function when given a new
input. Many problems in pattern recognition and computer vision
can be posed as regression problems, which include, but are not
limited to, classification [1], discriminant analysis [2], object
detection/tracking [3] and pose estimation [4-6]. Based on the
form taken by the input-output relationship, regression approa-
ches are often classified into two categories: linear and nonlinear
regression.

In linear regression, it is assumed that the inputs are linearly
related to their corresponding outputs. One advantage of this
model is its low computational cost and ease of implementation.
Its effectiveness has been shown in many computer vision pro-
blems, including visual tracking and image alignment, where the
linear relationship assumption between input image features and
target output is approximately satisfied [7,8]. However, many real-
word problems do not exhibit a linear input-output relationship,
limiting the utility of linear regression for these problems.

Compared with linear regression, nonlinear regression is more
sophisticated and capable of accounting for the potentially com-
plex relationship between inputs and their corresponding outputs.

* Corresponding author.
E-mail addresses: lilipan@uestc.edu.cn, panlili8255@gmail.com (L. Pan),
jason.saragih@truevisionsolutions.net (J.M. Saragih), wschu@cmu.edu (W.-S. Chu).

http://dx.doi.org/10.1016/j.patcog.2015.10.016
0031-3203/© 2015 Elsevier Ltd. All rights reserved.

Approaches of this kind include Gaussian process regression (GPR)
[9], mixture of regressors (MoR) [6,10], kernel partial least square
regression (KPLSR) [11], support vector regression (SVR) [12],
random regression forest (RRF) [4,13,14] and so forth. These
methods have seen wide applicability, such as head pose estima-
tion, human pose estimation and gaze estimation. In [15], Li et al.
proposed adopting support vector regression (SVR) [12] for head
pose estimation and in [11,16], Haj et al. applied the kernel version
of partial least squares to both head pose and human pose esti-
mation problems. Moreover, Williams et al. [9] proposed a sparse,
semi-supervised Gaussian process regression model for gaze
estimation. The disadvantage of the aforementioned three meth-
ods is the difficulty of finding the appropriate kernel function for
mapping, which is highly application- and data-dependent. Ran-
dom regression forests/ferns is an especially effective nonlinear
regression approach and has been successfully used for head pose
estimation, face alignment and age estimation in the work of
[4,14,17]. Although highly robust results can be achieved through
these approaches, they rely on large amounts of data and their
generalization quickly deteriorates with limited data and
labeling noise.

Mixture of regressors (MoR), as a nonlinear method, is best
suited to problems where the data is easily partitioned into dis-
crete set of categories. One of the well-known MoR methods is
mixture of linear regressors (MoLR) [18]. It allows a soft and
probabilistic split of input and output data into different clusters
and employs a linear regressor to model the local mapping rela-
tionship between input and output data associated with each
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Fig. 1. Illustration of MoGR. Fig. 1(a) and (b) show MoR and MoGR, respectively, for the problem of gaze estimation. MoGR avoids the overfitting and underdetermined
problems of MoR caused by limited training data. Here, A, and by, are the regression matrix and bias of each local regressor and y,Iy is the noise covariance of each regressor.

cluster [18]. Based on MoLR, mixture of experts (MoE), proposed
by Jacobs in [10], define the mixing coefficients as functions of the
input. Agarwal et al. successfully applied MoE to human pose
estimation problem in [6]. Tian et al. [19] proposed to fit MoE in
the latent space of input and output observations to improve the
prediction accuracy for human pose estimation. MoR has been
shown to accurately capture the complex global mapping rela-
tionship between input and output when local linear regressors
are used as their mixing elements. This is particularly useful as it
leads to a simple iterative learning procedure that alternates
between cluster assignment and solving for the parameters of
each local linear regressor. However, this often leads to poorly
conditioned solutions when data is limited as each mixture ele-
ment only sees a subset of all available data (see Fig. 1(a)). To
address this drawback, mixture of lasso regressors and mixture of
ridge regressors have been proposed in the related works [20,21].
Incorporating a Laplace or Gaussian prior on regression para-
meters leads to better determined solutions. However, this is
achieved at the cost of biasing the solution towards smaller values.

In this work, we propose a novel mixture of grouped regressor
(MoGR) that effectively circumvents the aforementioned learning
problem inherent in most conventional MoR approaches. As illu-
strated in Fig. 1, the main idea of MoGR is to partitions the indi-
vidual regressors in the model into a set of groups, where the
parameters of the regressors within each group are encouraged to
take on similar values. As the parameters for each local regressor
are learned using all data within a group, they tend to be better
conditioned and more robust to noise in the training data. We
motivate our construction through a probabilistic interpretation
and demonstrate its efficacy on the head pose and gaze estimation
problems, where it is shown to outperform conventional
approaches.

We begin in Section 2 with a review of mixture of linear
regression. We develop our MoGR method in Section 3 and pro-
vide experimental results in Section 4. We conclude in Section 5
and propose directions for future work.

2. Mixture of linear regressors (MoLR)

Mixture of linear regressors (MoLR) is a commonly used MoR
model. In this section, we give a brief review of MoLR that will
form the basis of our proposed construction in Section 3. Given a
set of input and output pairs {xn,yn}g:r where x, e ®°*! and
y, € R MoLR [18] models the mapping function from input to
target output with a mixture of K local linear regressors, each of
which is governed by its regression matrix Aje RP*H  bias
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Fig. 2. Probabilistic directed graph representing MoLR. Here, z, is a latent variable
indicating which regressor the input and output pair {X,,y,} belongs to.

by € %1, and the covariance of regression noise y,Iy € R™*H, k=
1,2,...,K (the mean of regression noise is assumed to be zero).
This is illustrated in Fig. 1. To indicate regressor association of
every data point {X,y, }, a K-dimensional binary latent variable z,
is introduced, where z;, € {0,1} and }",z;, = 1. If data point n is
assigned to component k then z,, =1, otherwise z,, =0. The
marginal distribution over z, is specified in terms of mixing
coefficients m, where 0 <m, <1 and > 7, =1. If we use ® to
denote all the parameters in MoLR model, namely A = {Ak}l,f: .
b= {bk}llf:l' Y= {yk}l,f:r and 7= {nk}f:l, the log likelihood
function for MoLR takes the form

N K
Inp(Y|X,0) = Z In Z n,cN<yn|A£xn+bk,yle), 1)
n=1 k=1

where X € *°*N is a matrix in which the nth column is given by X,
Y e ®"N and Z € RN are defined similarly. The graphical model
of MoLR is shown in Fig. 2.

The maximal likelihood solution of @ can be found by using EM
algorithm [18]. In the E-step, the current parameter values Q% s
used to calculate the posterior probability, or responsibility of each
point belonging to the kth regressor as

7N (Y ALK+ 7l )

K T ’ @)
YK N (y,.,|Aj Xn +b4,yle)

p<zkn =1 |Xﬂsy1’l’ GOM) =

Denoting wy,, = p(zkn =1 \xn,yn,G)”'d) in order to keep the nota-
tion uncluttered, the so-called Q function in EM algorithm is
constructed as follows:

o) (G), (~)°"’) =Sp (Z| X,Y, (~)°"’) Inp (Y, Z|X, (~)°"’) 3)
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