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a b s t r a c t

The Kolmogorov–Sinai (K–S) entropy is used to quantify the average amount of uncertainty of a dyna-
mical system through a sequence of observations. Sequence probabilities therefore play a central role for
the computation of the entropy rate to determine if the dynamical system under study is determinis-
tically non-chaotic, deterministically chaotic, or random. This paper extends the notion of the K–S
entropy to measure the entropy rate of imprecise systems using sequence membership grades, in which
the underlying deterministic paradigm is replaced with the degree of fuzziness. While constructing
sequential probabilities for the calculation of the K–S entropy is difficult in practice, the estimate of the
K–S entropy in the setting of fuzzy sets in an image is feasible and can be useful for modeling uncertainty
of pixel distributions in images. The fuzzy K–S entropy is illustrated as an effective feature for image
analysis and texture classification.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Texture is an important feature to describe an attribute of an
image, which is a phenomenon existing in natural scenes, physical
and biological appearances, and art work. Mathematical methods
such as measures of smoothness, coarseness, and spatial regularity
of distributions of pixels are often used to quantify and classify the
texture content of different types of images. Although texture is
inherently present in images, it is easy to recognize but difficult to
define [1]. This is because texture is subject to human perception,
and therefore there is no single precise mathematical definition of
texture [2]. In general, there are three main approaches to the
analysis of texture: statistical, structural, and spectral [3]. Statistical
approaches characterize textures as smooth, coarse, grainy, and so
on. Structural techniques deal with the arrangement of image pri-
mitives, such as the description of texture based on regularly spaced
parallel lines. Spectral techniques are based on properties of the
frequency content of an image to detect global periodicity by taking
into account high-energy, narrow peaks in the spectrum. It is
known that texture analysis has a long and rich development in
image processing and computer vision [4–7] as there is a textbook
devoted to the topic of image texture [8]. In fact, the extraction of
texture features continues receiving considerable attention to both
technical developments [9–14] and applications [15–20].

It has been pointed out that texture analysis is difficult because
of the lack of effective methods for characterizing texture at dif-
ferent scales and in terms of spatial multiresolution; therefore,
techniques such as wavelet transform and Gabor filter can be useful
for texture analysis [6,21]. Although there are many developments
of methods and their applications for texture analysis, the challenge
of the classification of texture in images still remains. This is
because the properties of texture are ill-defined and complex in
nature, being due to the high degree of local spatial variations of
image intensity in orientation and scale. Such complexity makes it a
burdensome task for current mathematical models to effectively
discriminate various types of textural information.

As a matter of fact, information and uncertainty are a coupled
entity that exists and needs to be addressed in many complex
problems of pattern recognition [22]. It is the uncertainty in
information, which makes real-life patterns be both predictable
and unpredictable at once. For example, in performance art, we
know the pianist will play all the notes that Beethoven wrote, but
the performance seems like it can go anywhere spontaneously.
This is known as “the uncertainty principle and pattern recogni-
tion” [23]. A major school of thought for quantifying the predict-
ability or uncertainty in complex information processing is the
theory of chaos and nonlinear dynamics. Chaos is the study of
surprises, the nonlinear and the unpredictable; while traditional
science deals with supposedly predictable phenomena. In spite of
its wide applications in many fields of science and engineering,
techniques developed for measuring nonlinear behavior in chaotic
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signals are mainly concerned with time-series data. Little effort
has been spent on the formulation and extension of chaos analysis
for quantifying the unpredictability of the nature of texture.

The study presented in this paper was motivated by the utili-
zation of the theories of chaos and fuzzy sets for addressing
dynamic uncertainty to characterize the spatial arrangement of
the distribution of intensities in textural images. In fact, it has been
pointed out that the theory of chaos and fuzzy logic are among the
most interesting fields of mathematical research, and these two
theories were applied to study the semantic dynamics of self-
reference [24]. The rest of this paper is organized as follows.
Section 2 briefly describes the concept of the Kolmogorov–Sinai
(K–S) entropy. The notion of the fuzzy K–S entropy is introduced in
Section 3. Section 4 presents the estimate of the fuzzy K–S entropy
in images. Experimental results on different types of textural
images and benchmark data are discussed in Section 5. Finally,
Section 6 is the conclusion of the research findings.

2. K–S entropy

The theory of chaos and the notion of entropy measure in infor-
mation theory have been found useful for solving various problems
in complex systems [25–27], ranging from electromagnetic trans-
mission of information to medicine and biology [28–30]. The three
most well-known quantitative measures of chaos are the Lyapunov
exponents, Kolmogorov–Sinai (K–S) entropy, and mutual information
[31,32]. This paper particularly focuses on the K–S entropy [33] to
extend its notion to measure the average amount of uncertainty rate
under imprecise information. Although the Shannon entropy cannot
be used to identify chaotic systems, its concept forms the basis for
the formulation of the K–S entropy [34]. In the analysis of time series,
the K–S entropy [35–37], which is thought to be a number indicating
the average time rate of newly created information induced by the
time evolution of chaotic trajectories, has also been known as the
measure-theoretic entropy or metric entropy, which has three
important properties: (1) sequence probabilities, (2) an entropy rate,
and (3) limits. To describe the state-space characteristics of a dyna-
mical system, consider a two-dimensional state-space region repre-
sented with a box that is divided into smaller boxes or cells, of which
each side has length ϵ. As the system evolves with time, the trajec-
tories of the dynamical system will propagate over a number of cells
covered by the state-space region. Regarding the first property, the
K–S entropy measures the uncertainty of a system associated with a
sequence of outcomes or observations of the trajectories afterm units
of time as follows:

Sm ¼ �k
XNm

i ¼ 1

pilog ðpiÞ; ð1Þ

where Sm is the Shannon entropy calculated at time m, pi is the
probability of a trajectory in the ith cell after m units of time, Nm is
the number of possible phase-space routes that the system visits at
time m, k is a constant and will be taken as 1 to simplify the
mathematical expression, and pilog ðpiÞ ¼ 0 when pi¼0.

The second property of the K–S entropy is characterized by the
rate of change of entropy as the system travels over time. The K–S
entropy Hm after m units of time that has length τ is expressed as

Hm ¼ 1
τ
ðSmþ1�SmÞ; ð2Þ

where Hm is the rate of change of the entropy resulting in going
from time t ¼mτ to t ¼ ðmþ1Þτ.

Thus, the average K–S entropy, denoted as HKS, when the
number of time steps, denoted as Nt, approaches infinity to cover

the entire attractor is

HKS ¼ lim
Nt-1

1
Ntτ

XNt �1

m ¼ 0

Smþ1�Sm ¼ lim
Nt-1

1
Ntτ

ðSNt �S0Þ: ð3Þ

The third property of the K–S entropy requires two limits: one
limit takes the time interval to zero, that is limτ-0; the second
limit takes the bin or cell size ϵ to zero, that is limϵ-0. Taking
together the above three properties, the complete definition of the
K–S entropy is said to be the average entropy per unit time at the
limit of time approaching infinity, and at the limits of the cell size
and of the time interval taking to zero. In mathematical notation,

HKS ¼ lim
τ-0

lim
ϵ-0

lim
Nt-1

1
Ntτ

ðSNt �S0Þ: ð4Þ

For discrete systems or when HKS is applied to iterated maps, τ
is set to 1 and limτ ¼ 0 is dropped out in Eq. (4) [31,32]; thus the K–
S entropy becomes

HKS ¼ lim
ϵ-0

lim
Nt-1

1
Nt

ðSNt �S0Þ: ð5Þ

It should be noted that either time steps or space steps are of
step sizes to refer to either time evolution or spatial evolution,
respectively. To maintain a coherent mathematical presentation of
the K–S entropy for time series and images, which are inter-
changeably addressed in following sections, the term “time step”
will be used to indicate either time or space.

3. K–S entropy of fuzzy sets

Let X ¼ fxg be a collection of points. A fuzzy set A in X is defined as
a set of ordered pairs: A¼ fðx;μAðxÞÞj xAXg, where μAðxÞ is called the
fuzzy membership function for the fuzzy set A, which maps each
element of X to a real number in the interval [0, 1] [38]. The entropy
of the fuzzy set A, denoted by D(A), is a measure of the degree of its
fuzziness, which has the following three properties [39]:

1. D(A)¼0 if A is a crisp (non-fuzzy) set, that is, if μAðxÞAf0;1g8x;
2. D(A) is maximum 3μAðxÞ ¼ 0:5 (most fuzzy) 8xAX; and
3. 8x;DðAÞZDðAnÞ where μAn ðxÞ is any “sharpened” (less fuzzy)

version of μAðxÞ, such that μAn ðxÞZμAðxÞ if μAðxÞZ0:5 and
μAn ðxÞrμAðxÞ if μAðxÞr0:5.

The above properties formally define a measure of fuzziness
that is related to the vague distinction between a set X and its
negation X : the closer X and X , the more fuzzy X. Motivated by the
concept of the Shannon entropy [40], the entropy of a discrete
fuzzy set A is defined as [39]

DðAÞ ¼ �
Xn
i

μAðxiÞlog ðμAðxiÞÞ�ð1�μAðxiÞÞlog ð1�μAðxiÞÞ: ð6Þ

Based on the definition of the entropy of a fuzzy set, the
uncertainty of a fuzzy system in the context of the K–S entropy
measured with a sequence of observations after m units of time
can be defined as

Dm ¼ k
XNm

i ¼ 1

Fi; ð7Þ

where k is previously defined as a constant and taken to be 1, and
Fi is the Shannon's function [39,40] of a fuzzy trajectory in the ith
cell:

Fi ¼ �μilog ðμiÞ�ð1�μiÞlog ð1�μiÞ; ð8Þ
where μiA ½0;1� is the fuzzy membership grade of a trajectory in
the ith cell (it is not necessary that

P
iμi ¼ 1 because the notion of
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