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a b s t r a c t

Reformulating computer vision problems over Riemannian manifolds has demonstrated superior per-
formance in various computer vision applications. This is because visual data often forms a special
structure lying on a lower dimensional space embedded in a higher dimensional space. However, since
these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computa-
tionally expensive, especially when one considers the clustering analysis of massive amounts of data. To
this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds.
This framework implements random projections for manifold points via kernel space, which can pre-
serve the geometric structure of the original space, but is computationally efficient. Here, we introduce
three methods that follow our framework. We then validate our framework on several computer vision
applications by comparing against popular clustering methods on Riemannian manifolds. Experimental
results demonstrate that our framework maintains the performance of the clustering whilst massively
reducing computational complexity by over two orders of magnitude in some cases.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering analysis is an automated process that groups unla-
belled data into subsets (here called clusters) that may express the
underlying structure of the data. It is one of the most critical tools
for understanding visual data [1,2]. For instance, significant
amounts of visual data such as videos and pictures are uploaded
every second [3]. Indeed, this is the case for YouTube where 100 h
of video are uploaded every minute [4]. Although these videos
have titles and some additional meta-information, it is often
desirable to automatically group the videos in terms of specific
criteria such as visual similarity or detected objects.

In recent years, modelling visual data in analytical manifolds
such as Riemannian manifolds has enjoyed success in various
computer vision application domains such as face recognition [5],
action recognition [6] and pedestrian detection [7]. This is because
visual features and models often possess special structures which
Euclidean space fails to capture. Riemannian manifolds which
form curved spaces are a more appropriate approach to model
problems in various computer vision tasks.

Unfortunately, despite the fact that clustering methods have
been studied since the 1950s [1,8], applying such methods directly

on data represented on Riemannian manifolds is not trivial. Rie-
mannian manifolds generally do not conform to Euclidean space
[5,9]. To address this, one could use manifold tangent spaces
which are locally homeomorphic to Euclidean space [9]. However,
this brings another challenge to applying existing clustering
algorithms as some general algebraic operations are not well
defined [10]. For instance, K-means requires the computation of
the mean within a cluster which cannot be computed directly. To
this end, Pennec et al. [10] reformulated the computation of mean
as a solution to an optimisation problem. Using this formulation,
the mean point is considered as the point over the manifold
minimising the geodesic distance (i.e. the true distance on the
manifold between two points) from the mean point to all other
points. The algorithm to solve this problem is called Karcher mean
[10]. Thanks to the Karcher mean, Turaga et al. [5] extended the K-
means algorithm into the Riemannian manifold, which is regarded
as intrinsic K-means and has been applied to activity-based video
clustering. Intrinsic K-means has further demonstrated better
performance than Euclidean-based methods (for example, Protein
Clustering [11]).

Generally, methods that completely honour the manifold
topology lead to higher accuracy. We shall categorise these
methods as intrinsic methods. Unfortunately, the computational
cost of intrinsic methods is extremely high since these need to
map all of the data to tangent spaces repeatedly.
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Extrinsic methods, on the other hand, seek solutions that may
not completely consider the manifold topology [12–17]. The most
simplistic way, here called Log Euclidean methods, is to embed all
of the points into a designated tangent space at the identity point
[18]. Log Euclidean methods can be considered as flattening the
manifold space. It has been used in various computer vision
applications, such as human action recognition [13] and cell clas-
sification [14]. This addresses the computational cost issues suf-
fered by the intrinsic methods, as the tangent space is home-
omorphic to the Euclidean space and well-known Euclidean
clustering approaches such as K-means can be directly applied.
Unfortunately, as the flattening step distorts the pair-wise dis-
tances in regions far from the origin of the tangent space, accuracy
is severely compromised. So much of the value of the manifold
approach is lost.

Other approaches that fall in the extrinsic method category are
kernel-based approaches [15–17], such as Kernel K-means. In
essence, the data in manifold space are first embedded into the
Reproducing Kernel Hilbert Space (RKHS) [19]. As the embedding
function is defined implicitly, generally kernel-based approaches
make use of the inner products in the RKHS in their formulation.
These inner products are then arranged in a Gram matrix. It is
often observed that the right choice of kernel could significantly
improve the performance [15]. Furthermore, in general, kernel
inner products with specified metrics have much less computa-
tional complexity than geodesic distances [20,21]. With these
properties, kernel-based approaches could be suitable to address
issues suffered in both the intrinsic approach and the Log Eucli-
dean approach. Unfortunately, the kernel-based approaches can-
not scale easily, as the Gram matrix computation is Oðn2Þ where n
is the number of data points. Also, it is often quite challenging to
kernelise the existing algorithms that do not have known kerne-
lised versions [22]. Furthermore, Nikhil et al. demonstrate that
clustering data in the RKHS may lead to unexpected results since
the clusters obtained in the RKHS may not exhibit the structure of
the original data [23].

Contributions: We summarise the advantages and shortcomings
of the existing approaches in Table 1. Our goal is to develop an
efficient clustering algorithm for Riemannian manifolds, which
significantly reduces the computational complexity, but still
maintains acceptable performance. The inspirations are drawn
from the random projection for Euclidean spaces which has
enjoyed success in various domains [24–26] due to its simplicity
and theoretical guarantees [27]. We list our contributions as
follows:

1. We propose a random projection framework for manifold fea-
tures. In general, the term projection is not well defined in
Riemannian manifolds. Therefore, we address this via the RKHS
constructed from a small subset of data. Once projected, we
choose to apply the K-means algorithm.

2. From our framework, it becomes clear that random hyperplane
generation is essential. Thus, we describe three generation

algorithms which are followed in our framework: (1) Kernelised
Gaussian Random Projection (KGRP); (2) Kernelised Ortho-
normal Random Projection (KORP) and (3) Kernel Principal
Component Analysis Random Projection (KPCA-RP).

We note that our method is different from manifold learning
approaches for clustering analysis described in [28]. Manifold
learning is the collection of non-linear dimensionality reduction
(NLDR) techniques that seek for a low dimensional representation
of a set of high-dimensional points lying on a non-linear manifold
[29]. They assume that the structure of the underlying manifold
was unknown. Contrary to this, in our paper, we are interested in
Riemannian manifolds whose underlying geometry is known.

We continue the paper as follows. Section 2 provides a brief
mathematical background of Riemannian manifolds. Section 3
details the proposed random projection framework for manifold
points and develops three different random projection methods
for clustering points on manifold spaces. The proposed methods
are then contrasted with the state-of-the-art methods in Section 4.
The conclusions and future directions are summarised in Section 5.

2. The geometry of Riemannian manifolds

A differentiable manifold M is a topological space that is
locally similar to Euclidean space [30]. One can use the tangent
space to model the neighbourhood structure on a differentiable
manifold. The tangent space at a point X on the manifold, TXM, is
a vector space that contains all possible directions tangentially
passing through X [30].

A Riemannian manifold is a differentiable manifold, endowed
with a Riemannian metric. The Riemannian metric is the family of
inner products on all of the tangent spaces [31]. This metric
enables us to define geometric concepts such as lengths, angles
and distances. The geodesic distance between two points X;Y is
defined as the length of the shortest curve between X and Y [31].

In this section, we briefly introduce two well known Riemannian
manifolds used in the computer vision community, namely Sym-
metric Positive Definite (SPD) manifold and Grassmannian manifold.

2.1. SPD manifolds

To compute a compact representation of an image, one method
is to calculate the covariance matrix of a set of d-dimensional
vector features extracted from the image [32]. Covariance matrices
naturally arise in the form of SPD matrices, which can be con-
sidered as points on SPD manifolds [7]. The geodesic distance
between points on SPD manifolds then can be calculated through
an affine invariant Riemannian metric:

dist G2ðX;YÞ ¼ ‖log ðX �1=2YX�1=2Þ‖2F ; ð1Þ
where X;YAM are two points over the SPD manifold. For further
discussions on SPD manifolds, the readers are referred to [9].

To further improve clustering performance, SPD manifolds
could be projected into RKHS by Mercer kernels. In this paper, we
use one of the popular kernels for SPD manifolds, namely the
Gaussian kernel, which is defined by

KðX;YÞ ¼ expð�β � dist2ðX;YÞÞ; ð2Þ
where distðX;YÞ is the distance between point X and Y . Note that,
the Gaussian kernel can only be a positive definite kernel when
dist(X,Y) is from a flat metric space [65]. Therefore, we use two
popular distance functions:. In this paper, we use two popular
approximate distance functions: Log Euclidean Distance (LED) [18]
and Stein Divergence (SD) [33]. The Gaussian kernel with LED and

Table 1
Summary of the existing works compared to our proposal.

Approach Exploits manifold
structure

Accuracy Computational
complexity

Intrinsic methods
[5,11]

Yes High High

Log-Euclidean meth-
ods [12–14]

Minimal Low Low

Kernel methods
[15–17]

Approximately High Moderate

Our proposal Approximately High Low
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