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Local image features are routinely used in state-of-the-art methods to solve many computer vision
problems like image retrieval, classification, or 3D registration. As the applications become more
complex, the research for better visual features is still active. In this paper we present a feature detector
that exploits the inherent geometry of sampled image edges using a-shapes. We propose a novel edge
sampling scheme that exploits local shape and investigate different triangulations of sampled points. We
also introduce a novel approach to represent the anisotropy in a triangulation along with different
feature selection methods. Our detector provides a small number of distinctive features that is ideal for
large scale applications, while achieving competitive performance in a series of matching and retrieval

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Local features provide a balance between the sparseness of
global representations and the density of features extracted on a
fixed grid of locations. By ignoring non-salient image parts and
focusing on distinctive regions they provide repeatability, discri-
minative power, computational efficiency and compactness. These
properties boost computer vision applications including large-
scale recognition, retrieval or 3D reconstruction.

State-of-the-art detectors like Hessian-Affine [1], MSER [2] and
SURF [3] have been used in many computer vision applications
and are quite mature and popular. However, the speed, stability
and image coverage provided by those detectors are not ideal. The
speed and image coverage of the Hessian-Affine detector are
limited, while multiple detections often appear on nearby loca-
tions at different scales. The MSER detector is fast, but often
extracts sparse regular regions that are not representative enough.
SURF is also fast, but detections are often not stable enough.
Recent publications compare state-of-the-art detectors not only by
common statistics (e.g. repeatability/matching score), but also in
diverse applications like image classification [4] or retrieval [5-7].

In an attempt to capture the dominant structural features in an
image, we propose a detector based on a local shape representation
rather than first- or second-order image derivatives. In this direction
we employ a-shapes, a well known method in computational geo-
metry introduced by Edelsbrunner et al. [8]. An a-shape is a subset of a
triangulation of a point set in a Euclidean space, where scale-like
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parameter « >0 determines the faces of the triangulation (points,
edges or triangles) that are included in the particular subset (see
Section 3.3). Given a set of points, a-shapes involve a grouping process
guided by «a, and capture the shape of structures generated by this
process. They can be thought of as a generalization of the convex hull,
being parameterized by «. Starting from the point set for a =0, the
subset of the triangulation expands to the convex hull at the other
extreme a = oo (see Fig. 1).

The set of all a-shapes (for all possible values of «) is a filtration over
a triangulation of the point set, ie. a partial ordering of simplices
(edges and triangles in two dimensions) [9]. Delaunay triangulation is
the most common choice, but since it is only based on point
coordinates, it may be a poor representation depending on the
application, e.g a sampled function over an image may be more
informative. Weighted a-shapes [10] on the other hand are based on a
regular triangulation and provide a more flexible representation, by
associating an additional scalar parameter per point. Teichmann and
Capps introduce the anisotropic a-shapes [11], using an even richer
representation per point. Anisotropic a-shapes are a generalization of
weighted a-shapes, defined on non-Euclidean metric spaces.

In [12] we introduce WaSH, a detector based on weighted a-shapes
that groups edge samples by exploiting location, gradient strength and
local shape. To capture local shape, we devise an efficient way to
overcome the main weakness of a-shapes, namely the automatic
selection of « value that best represents the underlying point set. We
also show how noisy points or groupings can be automatically filtered
out by a shape-based stability measure. WaSH performs quite well and
is controlled by a single and intuitive parameter.

In this paper we treat a local feature as a region delineated by a
set of points sampled from its contour, as in WaSH. However,
instead of using a uniform sampling scheme along the edges, we
explore a non-uniform scheme whose sampling density is guided
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Fig. 1. Example of the a-filtration. Different instances of the filtration for different values of a: starting from the point set for « = 0 (top left) and adding triangles and edges,
we end up to the convex hull for a = oo (bottom right). Observe how the cavities of the a-shapes correspond to cavities of the objects and blob-like regions.
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Fig. 2. Overview of our detector. (a) Edges of the input image are (b) non-uniformly sampled. (c) We create the a-filtration of a triangulation over the samples and track the
evolution of connected components. (d) We extract features by selecting stable and prominent components.

by local edge shape. The major steps of the algorithm are
summarized in Fig 2, namely (a) edge extraction, (b) non-
uniform sampling based on local anisotropy, (c) triangulation of
the samples and o-filtration construction, and (d) local feature
extraction based on shape measures. Compared to WaSH, we
improve and extend the method by

® applying non-uniform sampling based on image edges and
local shape;

introducing anisotropically weighted a-shapes, also adapted to
local shape;

comparing several triangulations to build the a-shapes; and
proposing and evaluating different measures to select domi-
nant components.

The remaining of the paper is organized as follows: In Section 2 we
discuss related work, followed by the description of our method. In
Section 3.1 we describe different sampling strategies and in Section 3.2
we provide an overview of the triangulations used. In Section 3.3 we
introduce anisotropically weighted a-shapes. In Section 4.1 we
describe the component trees used to track evolving shapes and in
Section 4.2 we propose different measures to select dominant
components as features, followed by an overview of our algorithm
in Section 4.3. In Section 4.4 we show visual examples and discuss the
qualities of our detector. The performance of our detector is experi-
mentally evaluated and compared to the state-of-the-art in Section 5,
followed by conclusions and discussion in Section 6.

2. Related work

Early region detectors were based on extending ideas found in
corner detectors like Beaudet [13] and Harris and Stevens [14],
which were based on the Hessian and the second moment matrix
respectively. In his inspiring work, Lindeberg et al. [ 15] studied scale-
invariant detectors and established the theoretical foundations for
making them affine-invariant [16]. Based on these foundations,
Lowe [17] introduced the scale invariant feature transform (SIFT), still
one of the most popular detectors, which achieves invariance to
scale and rotation based on the Difference-of-Gaussian (DoG)
operator. Mikolajczyk et al. [1] extended the Harris-Laplace and
Hessian-Laplace operators towards affine invariance using the
Laplacian-of-Gaussian (LoG) operator in affine scale space.

More recently, Alcantarilla et al. [7] introduce the KAZE
operator, which detects maxima of the Hessian in a nonlinear
scale space built by diffusion filtering. Although the statistics are
comparable to the state-of-the-art, the creation of the nonlinear
scale-space is computationally expensive and the number of
features is high. The fast variant of KAZE in [18] is still slower
than the state-of-the-art, while not providing better performance.

The maximally stable extremal regions (MSER) of Matas et al. [2],
one of the best performing region detectors in [19], detect regions of
stable intensity and therefore avoid common problems of gradient-
based methods like localization accuracy and noise. The idea is to
compute a watershed-like segmentation and to select those regions
that remain stable over a predefined set of thresholds. MSER are
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