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a b s t r a c t

The problem we address in this paper is how to learn joint representation from data lying on multiple
manifolds. We are given multiple data sets, and there is an underlying common manifold among the
different data sets. Each data set is considered to be an instance of this common manifold. The goal is to
achieve an embedding of all the points on all the manifolds in a way that preserves the local structure of
each manifold and that, at the same time, collapses all the different manifolds into one manifold in the
embedding space while preserving the implicit correspondences between the points across different
data sets. We propose a framework to learn embedding of such data, which can preserve the intra-
manifolds' local geometric structure and the inter-manifolds' correspondence structure. The proposed
solution works as extensions to current state-of-the-art spectral-embedding approaches to handling
multiple manifolds.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction techniques have proven useful in
many computer vision problems. In particular, nonlinear dimen-
sionality reduction techniques [1–7] can achieve embedding of
data lying on a nonlinear manifold by changing the metric from
the original space to the embedding space, based on the mani-
fold's local geometric structure. Many of the introduced nonlinear
dimensionality reduction techniques are instances of graph spec-
tral-embedding [8]. Spectral-embedding approaches, in general,
construct an affinity matrix between data points that reflects the
local manifold structure, i.e., constructing a graph with edge
weights reflecting the local geometry of the manifold. Embedding
is then achieved through solving an eigenvalue problem on the
affinity matrix. Examples of nonlinear dimensionality reduction
techniques in this category include: isometric feature mapping
(Isomap) [1], locally linear embedding (LLE) [2], Laplacian eigen-
maps [3], and manifold charting [4], among others. Bengio et al. [9]
and Ham et al. [10] showed that these approaches are all instances
of kernel-based learning, in particular, kernel principle component
analysis (KPCA).

All these nonlinear embedding frameworks were shown to be
able to embed data lying on a nonlinear manifold into a low-
dimensional Euclidean space for toy examples, as well as for real

images. Such approaches are able to embed image ensembles
nonlinearly into low-dimensional spaces where various orthogo-
nal perceptual aspects can be shown to correspond to certain
directions or clusters in the embedding spaces. However, the
application of such approaches is limited to embedding of a single
manifold and, as we shall show, fails to embed data lying on
multiple manifolds.

The problem we address in this paper is how to learn useful
representation from data sets lying on multiple manifolds. We are
given multiple data sets, and there is an underlying common
manifold among the different data sets. Each data set is considered
to be an instance of this manifold. For example, images of different
objects with similar geometry are observed from different views,
where the images of each object are one data set. The images of
each object lie on the view manifold of that object, i.e., each data
set is an instance of a view manifold of a different object. We can
think of such manifolds as quasi-parallel in the space. Different
objects' manifolds are distributed in the space. We can even think
of such manifolds themselves as lying on a manifold (assume that
we collapse each data set into a point). Another example comes
from embedding motion manifolds for different people (e.g.,
consider data on different people walking). Each person's data set
represents an instance of the “walking” manifold, while each
person's walking manifold (as a whole) is lying on a different
location in the input space. None of the existing manifold learning
techniques can be used to learn such complex structures: both
intra-manifold and inter-manifold structures.
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Our contribution: We propose a framework for learning
embedded representation from different data sets, each assumed
to lie on a nonlinear manifold. The embedding achieves repre-
sentation of the common underlying manifold shared between the
different data sets. The problem of learning a common embedded
representation from multiple data sets becomes trivial if we
assume that there are given correspondences between the differ-
ent data sets, i.e., the data sets are aligned. In this paper, we do not
assume that such correspondences are given. The results we
achieve are superior to existing state-of-the-art embedding
approaches when applied to such a setting. The proposed solution
works as extensions for the current state-of-the-art spectral-
embedding approaches, such as Isomap [11], LLE [2], and Laplacian
eigenmaps [3], to handle multiple manifolds.

The organization of the paper is as follows. Section 2 discusses
some motivating applications of the proposed approach. Section 3
presents related works. Section 4 presents the proposed joint
manifold embedding with inter-manifold correspondence esti-
mation. Section 5 presents some examples of experimental results
on different data sets.

2. Motivation and problem definition

Suppose we are given K sets of data lying on K different
manifolds, e.g., different people performing the same set of

gestures or facial expressions. These data represent two different
factors: body configuration variability, which typically lies on a
low-dimensional manifold, and different people's variability,
which might be higher in its dimensionality. One objective is to
learn an embedding of the body-configuration manifold invariant
to the person performing the motion. Learning such joint person-
invariant body-configuration manifold embedding is essential for
estimation of the intrinsic configuration, for providing dynamic
models for tracking, and for recognition of gestures and activities.

Obviously, we can achieve embedding of each person's data set
individually, which yields person-specific body configuration
manifold embedding, as can be seen in Fig. 1. Such embedding will
be different from one person to another, and will not be useful in
any general tracking or recognition task where the goal is to track
and recognize the facial expression. On the other hand, if we put
all the data together in one set and try to embed them using any
nonlinear embedding technique, we will not be able to achieve
meaningful embedding either, since the inter-manifold distance
between data for different people will be much larger than the
intra-manifold distance (within one specific person). So, we will
end up with K separate clusters in the embedding space, as can be
seen from the bottom-right embedding in Fig. 1. In this example, a
Gaussian process latent variable model (GPLVM) [5] is used to
achieve the embedding.

Another example is shown in Fig. 2, where we used shapes
representing side-view walking sequences for multiple people
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Fig. 1. Example embedding for facial expressions of three people: the first three plots show embedding for an individual person. The last plot shows embedding of three
manifolds together, which is dominated by the inter-person manifold distance.
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