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a b s t r a c t

In this paper, we investigate two fast subgraph kernels based on a depth-based representation of graph-
structure. Both methods gauge depth information through a family of K-layer expansion subgraphs
rooted at a vertex [1]. The first method commences by computing a centroid-based complexity trace for
each graph, using a depth-based representation rooted at the centroid vertex that has minimum shortest
path length variance to the remaining vertices [2]. This subgraph kernel is computed by measuring the
Jensen–Shannon divergence between centroid-based complexity entropy traces. The second method, on
the other hand, computes a depth-based representation around each vertex in turn. The corresponding
subgraph kernel is computed using isomorphisms tests to compare the depth-based representation
rooted at each vertex in turn. For graphs with n vertices, the time complexities for the two new kernels
are Oðn2Þ and Oðn3Þ, in contrast to Oðn6Þ for the classic Gärtner graph kernel [3]. Key to achieving this
efficiency is that we compute the required Shannon entropy of the random walk for our kernels with
Oðn2Þ operations. This computational strategy enables our subgraph kernels to easily scale up to graphs
of reasonably large sizes and thus overcome the size limits arising in state-of-the-art graph kernels.
Experiments on standard bioinformatics and computer vision graph datasets demonstrate the effec-
tiveness and efficiency of our new subgraph kernels.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There has recently been an increasing interest in learning and
mining data using graph structures. Application includes (a) view-
based object recognition [4], (b) bioinformatics [5,6] (e.g., classifying
proteins into different families, classifying tissue samples), and
(c) social networks (e.g., classifying users based on their feeds on
Twitter, Facebook, etc.). One challenge arising in classifying graphs is
how to convert the discrete graph structures into numeric features or
efficiently compute similarities between graphs for classification. One
way to address this problem is to use graph kernels.

1.1. Graph kernels

Graph kernels can characterize graph features in an explicit high
dimensional space and thus have the capability of preserving graph
structures. A number of graph kernels have been defined in the
literature. Generally speaking, most existing graph kernels are usually
formulated in terms of instances of the R-convolution kernel family

developed by Haussler [5]. R-convolution is a generic way for defining
graph kernels based on comparing all pairs of decomposed sub-
graphs. Specifically, all available graph decompositions can be used to
define a kernel, e.g., the graph kernel based on comparing all pairs of
decomposed (a) walks, (b) paths and (c) restricted subgraph or
subtree structures. With this scenario, Kashima et al. [7] have
proposed a random walk kernel by comparing pairs of isomorphic
random walks in a pair of graphs. The main drawback of the random
walk kernel is the notorious tottering problem. This occurs when a
random walk on a graph moves in one direction and then immedi-
ately returns to the starting position through the same vertices and
edges possibly multiple times. To overcome this shortcoming, Borg-
wardt et al. [8] have proposed a shortest path kernel by counting the
numbers of pairwise shortest paths having the same length in a pair
of graphs. Aziz et al. [9] have defined a backtrackless kernel using the
cycles identified by the Ihara zeta function [10] in a pair of graphs. The
method overcomes the tottering problem using backtrackless sub-
structures, i.e., the shortest paths or cycles in graphs. Unfortunately,
shortest paths and cycles are structurally simple, and reflect limited
topology information. Moreover, the computational efficiency of the
two kernels also tends to be burdensome for graphs of large sizes, e.g.,
a graph having more than one thousand vertices.

To address the problem of inefficiency, Shervashidze et al. [5]
have developed a fast subtree kernel by comparing pairs of
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subtrees identified by the Weisfeiler–Lehman (WL) algorithm.
Unfortunately, like the random walk kernel, the WL isomorphism
based subtree kernel also suffers from tottering. This is because
the subtrees identified by the WL algorithm may also include
several copies of the same pairwise vertices connected by the
same edge. Furthermore, Costa and Grave [11] have defined a
neighborhood subgraph pairwise distance kernel by counting the
number of pairwise isomorphic neighborhood subgraphs. Both the
WL subtree and neighborhood subgraph kernels can be computed
in polynomial time. Some alternative graph kernels that specifi-
cally form the R-convolution framework include (a) the segmenta-
tion graph kernel developed by Harchaoui and Bach [12], (b) the
point cloud kernel developed by Bach [13], (c) the subgraph
matching kernel developed by Kriege and Mutzel [14], and (d)
the (hyper)graph kernel based on directed subtree isomorphism
tests developed and described in our previous work [15]. More-
over, it is important to note that, some of the aforementioned R-
convolution kernels can accommodate attributed graphs too
(i.e., these kernels can accommodate the attributed information
residing on the vertices or edges). They can thus capture more
characteristics that encapsulate label information on the vertices
and edges [14]. Examples include the WL subtree kernel [5], the
shortest path kernel [8], the random walk kernel [7], the subgraph
matching kernel [14], and the (hyper)graph kernel [15].

One significant drawback of R-convolution kernels is that they
compromise to use substructures of limited size, which only
roughly capture topological arrangements of a graph. Though this
strategy avoids the notorious inefficiency of R-convolution kernels
when using large substructures, the limited size can only reflect
restricted topological characteristics of a graph. Moreover, some R-
convolution kernels still require significant computational over-
heads for large graphs (e.g., graphs having thousands of vertices).

An alternative way to construct a kernel is to measure the mutual
information between pairs of graphs using the classical Jensen–
Shannon divergence. In probability theory, the Jensen–Shannon diver-
gence is a dissimilarity measure between probability distributions in
terms of the nonextensive entropy difference associated with the
probability distributions [16]. It is not only symmetric but also always
well defined and bounded. In our previous work [4], we have used the
classical Jensen–Shannon divergence to define a Jensen–Shannon
kernel for graphs. Here, the Jensen–Shannon divergence between a
pair of graphs is defined in terms of the entropy difference between
the entropy of a composite graph structure and that of the individual
graphs. Unlike the R-convolution kernels, the entropy associated with
a probability distribution of an individual graph can be computed
without decomposing the graph into substructures. Therefore, the
computation of the Jensen–Shannon graph kernel between a pair of
graphs avoids burdensome (dis)similarity measurements involved in
comparing all substructure pairs. Unfortunately, the existing Jensen–
Shannon graph kernel can only capture the global similarity between a
pair of graphs, and cannot distinguish the basis of the interior
topological information. Furthermore, the required entropy that must
be calculated for the composition of a pair of graphs is obtained from
the product graph. The vertex number of the product graph is the
multiple of the vertex numbers of the pair of graphs being compared.
As a result, the entropy difference is dominated by that of the product
graph when the graphs being compared are large.

To overcome the shortcomings of existing graph kernels, in this
paper we aim to develop novel and fast subgraph kernels. Our new
kernels are based on a rapidly computed depth-based graph
representation.

1.2. Depth-based representations

Depth-based representations have been widely used for char-
acterizing undirected graphs [17]. One approach to computing a

depth-based representation for a graph is based on an information
content flow through a family of K-layer expansion subgraphs [1].
These subgraphs can be located from a vertex and have a max-
imum topology distance K from the vertex to the remaining
vertices. Following this approach, Escolano et al. [1] have shown
how to compute the thermodynamic based depth complexity for a
graph. This is done by measuring the heat flow complexities of
expansion subgraphs around the vertices of the graph. Unfortu-
nately, the heat flow complexity measure for a (sub)graph having
n vertices requires time complexity Oðn5Þ. As a result, the thermo-
dynamic depth complexity measure cannot be efficiently com-
puted. To overcome this shortcoming, Bai and Hancock [2,18,19]
have developed a centroid-based complexity trace from a centroid
vertex that has the minimum variance of shortest path lengths to
the remaining vertices. This depth-based representation is com-
puted around the centroid vertex, and decomposes a graph into a
family of K-layer centroid expansion subgraphs that has a greatest
shortest path length K rooted from the centroid vertex. The
resulting complexity trace vector is computed by measuring the
entropies of the expansion subgraphs. The centroid based method
can be computed efficiently. The reason for this is that the entropy
based complexity measures are computed on a small set of
expansion subgraphs rooted at the centroid vertex, and can be
computed in polynomial time.

Unfortunately, the centroid-based complexity trace may gen-
erate information loss for a graph structure. This is because the
complexity trace vector of a graph can be viewed as an embedding
vector, embedding a graph into a vector tends to approximate the
structural correlations into a low dimensional space. One way to
overcome the problem is to kernelize the embedding vectors (i.e.,
the complexity trace vectors) of graphs as a kernel function that
represents graph structure in a high dimensional space and thus
better preserves graph structure. Furthermore, since the centroid
vertex is identified through a global analysis of the shortest path
length distribution, the centroid expansion subgraphs provide a
fine representation of graph structure. As a result, the centroid-
based complexity trace and its required centroid expansion sub-
graphs offer us a potential way of defining a subgraph kernel.
Unfortunately, the subgraphs of increasing layer size K tend to be
the global graph (i.e., the largest layer subgraph is the graph itself),
and straightforwardly measuring the (dis)similarity between
whole graphs usually requires burdensome computations.

1.3. Contributions

The aim of this paper is to develop fast subgraph kernels that
can not only be efficiently computed for large graphs but can also
capture rich topological arrangement information contained
within graphs. To this end, we investigate how to kernelize a
depth-based representation of graphs. The contributions of this
paper are twofold.

First, we develop a new depth-based subgraph kernel, namely the
Jensen–Shannon subgraph kernel. This is done by measuring the
Jensen–Shannon divergence between depth-based representations
rooted at the centroid vertices [2]. To this end, we commence by
computing the centroid-based complexity trace developed in our
previous work and described in [2,18,19]. The advantage of using
the complexity trace to characterize graphs is that it not only reflects
dominant depth complexity information around the centroid vertex
for a graph but also represents the graph in a high dimensional space.
This is because the centroid-based complexity trace for a graph
encapsulates information flow from the centroid vertex to the global
graph using entropy measures. By contrast, existing entropy measures
[21–23] or the depth complexity measures [17,1] only provide us with
an uni-valued complexity measure for a graph. They thus reflect
limited graph characteristics. With a pair of graphs and their centroid-
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