
Pattern Recognition Letters 112 (2018) 18–26 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Directional statistical Gabor features for texture classification 

Nam Chul Kim 

∗, Hyun Joo So 

School of Electronics Engineering, College of IT Engineering & IEDT, Kyungpook National University, IT1-720, 80 Daehakro, Bukgu, Daegu 41566, Republic of 

Korea 

a r t i c l e i n f o 

Article history: 

Received 18 March 2017 

Available online 22 May 2018 

Keywords: 

Feature extraction 

Feature construction 

Texture classification 

Gabor filter 

Directional statistics 

a b s t r a c t 

In texture classification, methods using multi-resolution directional (MRD) filters such as Gabor have not 

often shown significantly better performance than simple methods using local binary patterns, although 

they have a robust theoretical background and high computational complexity. We expect that this is be- 

cause such methods usually make use of only the modulus parts of complex-valued MRD-filtered images 

and do not fully utilize their phase parts and other directional information. This letter presents a rotation- 

invariant feature using four types of directional statistics obtained from both the modulus and phase 

parts of Gabor-filtered images. First, modulus statistics, scale-shift cross-correlations, and orientation-shift 

cross-correlations are computed over all directions for each pixel of Gabor-filtered images, and global au- 

tocorrelations are computed over all pixels of each Gabor-filtered image. Global means and standard de- 

viations for the three types of directional statistics and directional means and standard deviations for the 

global autocorrelations are then computed to form a feature vector. Experimental results with Brodatz, 

STex, CUReT, KTH-TIPS, UIUC, UMD, ALOT, and Kylberg databases show that the proposed method yields 

excellent performance compared with several conventional methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Techniques for classification of image textures can be widely 

applied to various image processing fields such as texture im- 

age retrieval, image segmentation, biometrics, and face recognition 

[1,2] . Recent research works have presented texture classification 

methods using multi-resolution directional (MRD) filters such as 

Gabor and wavelet filters [3–6] , which are based on the charac- 

teristics of the human visual system. It is well known that most 

mammalian cortical simple cells yield the behaviour of multiscale 

filtering with orientation selectivity or MRD filtering. In particular, 

the receptive field profiles have been shown to be well matched 

with the impulse responses of Gabor filters, which achieve the 

lowest bound on the product of effective spatial extent and fre- 

quency bandwidth [7,8] . 

Wavelet transforms using separable filters are a special case 

of two-directional (horizontal and vertical) MRD filters. Some of 

them extract energy distributions [9] , refined histogram signatures 

[10] , or SVD (singular value decomposition) distribution parame- 

ters [11] of wavelet sub-band images. Others seek bit plane signa- 

tures [12] of absolute wavelet sub-band images. 

Numerous approaches using simple directional gradients are 

also found in the MRD filtering literature. Simple directional gra- 
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dient here means the grey-level difference of a neighbour pixel 

along each direction to a centre pixel [13] . It can be viewed as 

one of the outputs of Haar MRD high-pass filters with two taps, 

1 and −1, along all. The local binary pattern (LBP) suggested by 

Ojala et al. [2] is considered a sign configuration of simple direc- 

tional gradients at a pixel. Many of them adopt multi-resolution 

schemes. After LBPs for an image are binary-coded, the histogram 

or co-occurrence of the LBP codes is commonly used for the tex- 

ture feature [14] . Some typical variants of the LBP are uniform LBP 

(ULBP) [15] , dominant LBP (DLBP) [16] , and completed LBP (CLBP) 

[17] . 

Many advanced methods using LBP that produce successful per- 

formance have also been reported recently, some of which are la- 

belled DLBP [18] , median robust extended LBP (MRELBP) [19] , and 

scale-selective LBP (SSLBP) [20] . In SSLBP, dominant patterns are 

first found from CLBP histograms for each scale, and the domi- 

nant pattern of the maximal frequency over all scales for each his- 

togram bin is then searched for a scale-invariant feature. This fea- 

ture shows excellent performance that is robust even to scale vari- 

ation. 

In this letter, we concentrate on feature extraction using Gabor 

filtering. Although Gabor filters possess beneficial attributes that 

mimic the behaviour of mammalian cortical simple cells and sup- 

port wider regions than Haar MRD filters, Gabor features rarely 

show performance superior to LBP-based features. One can expect 

that this is because most conventional Gabor features contain en- 
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ergy statistics features that utilize only the modulus parts of Ga- 

bor filter outputs and do not include other statistical features using 

both modulus and phase parts. 

Because rotation invariance may be an important property of 

texture features, many Gabor features have been presented for 

rotation-invariant texture classification. In [22] , rotation-invariant 

Gabor filters were used, which are the results of averaging Gabor 

filters over all directions. In [3] , 2D DFTs of mean and standard de- 

viation feature matrices were utilized, whose components are the 

global means and standard deviations of Gabor response magni- 

tudes along directions and scales. In [4] , the classification was ex- 

ecuted such that the covariate shift of the Gabor feature is mini- 

mized. In [5] , local binary patterns were extracted from the mag- 

nitudes of Gabor-filtered images. 

In this paper, we present a rotation-invariant feature using 

four types of directional statistics obtained from both the mod- 

ulus and phase parts of Gabor-filtered images. First, modulus 

statistics, scale-shift cross-correlations, and orientation-shift cross- 

correlations are computed over all directions for each pixel of 

Gabor-filtered images, and global autocorrelations are computed 

over all pixels of each Gabor-filtered image. Next, global means 

and standard deviations for the directional statistics and direc- 

tional means and standard deviations for the global autocorrela- 

tions are computed to form a feature vector. Experimental results 

with Brodatz [23] , STex [24] , CUReT [25] , KTH-TIPS [26] , UIUC [27] , 

UMD [28] , ALOT [29] , and Kylberg [30] databases (DBs) show that 

the proposed method yields excellent performance compared with 

several conventional methods. 

The rest of the paper is organized as follows. Section 2 presents 

the proposed directional statistical Gabor feature and texture clas- 

sification method. Section 3 describes the experimental results, 

and Section 4 concludes the paper. 

2. Proposed texture classification using directional statistical 

Gabor features 

In this section, we first describe directional and global statis- 

tics using Gabor-filtered images and how to construct our pro- 

posed features from the Gabor statistics. We then explain the tex- 

ture classification method that uses the Gabor features. 

2.1. Directional and global statistics using Gabor-filtered images 

Consider an image { I ( p ) | p ∈ P }, where I ( p ) denotes the grey 

level of a position or pixel p on a two-dimensional plane, and P 

is the set of all image pixels. Let { h s , θ ( p ) | p ∈ P , s ∈ S , θ ∈ �} 

be a set of MRD filters along direction θ at scale s. The sets of 

scales and directions are given as S = { 1 , b, . . . , b M−1 } and � = 

{ 0 , φ, . . . , ( N − 1 ) φ} , where b denotes the scale base, φ the direc- 

tional spacing of φ = 2 π/N, and M and N the number of scales 

and the number of directions, respectively. Although most Gabor- 

based methods work with one-half of the full number of direc- 

tions, here we consider the full number of directions in [0, 2 π ) to 

obtain rotation-invariant directional statistics. Thus, N is even so 

that there will be the same number of directions in each of [0, π ) 

and [ π , 2 π ). 

We then use a set of Gabor filters to obtain an MRD image rep- 

resentation { f s, θ ( p )| p ∈ P , s ∈ S , θ ∈ �} as 

f s,θ ( p ) = I ( p ) ∗ h s,θ ( p ) (1) 

= 

∑ 

q ∈ R s 
h s,θ ( q ) I ( p − q ) (2) 

where the symbol ∗ stands for a convolution operation and R s a fil- 

ter support region for each scale s . For simplicity, the input image 

and a Gabor-filtered image are expressed as I and f s, θ when they 

are considered as individual images. 

Among various forms of Gabor filters, we choose the ones used 

by Han and Ma [22] , which are rewritten in the form of 

h s,θ ( p ) = 

‖ κs,θ‖ 

2 

2 πσx σy 
exp 

[
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(
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(
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where σ x and σ y characterize the spatial extent and frequency 

bandwidth of the Gabor filters, and W denotes their center fre- 

quency. The operation · is the inner product between two vectors. 

The wave vector κ s, θ is defined as 

κs,θ = s −1 e jθ . (4) 

The set of Gabor filters (3) is commonly used in texture clas- 

sification owing to its relatively good performance. The Gabor pa- 

rameters σ x , σ y , and b are determined from the upper and lower 

centre frequencies, U h ( = W ) and U l , preselected. 

We consider two types of statistics to obtain an efficient feature 

vector. These are defined by 〈
F 
(

f s,θ ( p ) 
)〉

�
= 

1 

| �| 
∑ 

ψ∈ �
F 
(

f s,θ ( p ) 
)

(5) 

where F denotes a function, � is � or P, | �| is the size of �, and 

ψ is an element of �. If � is �, then these are called directional 

statistics, and if � is P , then they are called global statistics. Be- 

cause we see that 〈
F 
(

f s,θ ( p ) 
)〉

�
= 

〈
F 
(

f s,θ+ nφ( p ) 
)〉

�
(6) 

for any rotation n φ with an integer n, we can say that any direc- 

tional statistics (6) are rotation invariant for each pixel. 

If we extract the global mean and standard deviation for each 

MRD image, we obtain a feature vector of dimension 2 MN that is 

not rotation invariant. To acquire a rotation-invariant one, we may 

first compute a directional statistical image for each MRD-filtered 

image and then obtain their global means and standard deviations, 

which form a feature vector of dimension 2 M . As a result, we gain 

rotation invariance but lose directional configuration details. 

To obtain a feature vector that exposes various views of texture 

characteristics well, we suggest four types of directional statistics 

for Gabor-filtered images that utilize their phase parts as well as 

their modulus parts. They include first-order statistics such as the 

mean and second-order statistics such as normalized correlations. 

For two complex-valued functions g 1 ( ψ) and g 2 ( ψ) of a variable 

ψ ∈ �, we define a second-order correlation as 

COR 

�
( g 1 ( ψ ) , g 2 ( ψ ) ) = R 

{ 

〈 g 1 ( ψ ) g ∗2 ( ψ ) 〉 �[〈 | g 1 ( ψ ) | 2 〉 �〈 | g 2 ( ψ ) | 2 〉 �
]1 / 2 

} 

(7) 

= 

〈 g R 1 ( ψ ) g R 2 ( ψ ) + g I 1 ( ψ ) g I 2 ( ψ ) 〉 �[ 
〈 ∣∣g R 

1 ( ψ ) 
∣∣2 + 

∣∣g I 
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∣∣2 〉 
�
〈 ∣∣g R 

2 ( ψ ) 
∣∣2 + 
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2 ( ψ ) 

∣∣2 〉 
�

] 1 / 2 (8) 

where the symbol ∗ denotes a complex conjugation, | · | the modu- 

lus, and � the real part. The symbols g R 
i 
(ψ) and g I 

i 
(ψ) denote the 

real part and the imaginary part of g i ( ψ), respectively. 

Referring to the form of (8) , we define a higher-order correla- 

tion to be extended as 

COR 

�
( g 1 ( ψ ) , g 2 ( ψ ) , . . . , g n ( ψ ) ) 

= 

〈 ∏ n 
i =1 g 

R 
i ( ψ ) + 

∏ n 
i =1 g 

I 
i ( ψ ) 〉 �[ ∏ n 
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〈 ∣∣g R 
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where 
∏ 

denotes the product of all elements, and n is the order of 

the correlation. 



Download English Version:

https://daneshyari.com/en/article/6940097

Download Persian Version:

https://daneshyari.com/article/6940097

Daneshyari.com

https://daneshyari.com/en/article/6940097
https://daneshyari.com/article/6940097
https://daneshyari.com

