
Pattern Recognition Letters 112 (2018) 49–55

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Extende d-alphab et finite-context models

João M. Carvalho

a , ∗, Susana Brás a , b , Diogo Pratas a , Jacqueline Ferreira

c , d ,
Sandra C. Soares c , e , f , Armando J. Pinho

a , b

a Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Portugal
b Department of Electronics Telecommunications and Informatics of Aveiro, University of Aveiro, Portugal
c Department of Education and Psychology, University of Aveiro, Portugal
d IBILI, Faculty of Medicine, University of Coimbra, Portugal
e CINTESIS-UA, University of Aveiro, Portugal
f Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden

a r t i c l e i n f o

Article history:

Received 29 June 2017

Available online 1 June 2018

a b s t r a c t

The normalized relative compression (NRC) is a recent dissimilarity measure, related to the Kolmogorov

complexity. It has been successfully used in different applications, like DNA sequences, images or even

ECG (electrocardiographic) signal. It uses a compressor that compresses a target string using exclusively

the information contained in a reference string. One possible approach is to use finite-context models

(FCMs) to represent the strings. A finite-context model calculates the probability distribution of the next

symbol, given the previous k symbols. In this paper, we introduce a generalization of the FCMs, called

extended-alphabet finite-context models (xaFCM), that calculates the probability of occurrence of the next

d symbols, given the previous k symbols. We perform experiments on two different sample applications

using the xaFCMs and the NRC measure: ECG biometric identification, using a publicly available database;

estimation of the similarity between DNA sequences of two different, but related, species – chromosome

by chromosome. In both applications, we compare the results against those obtained by the FCMs. The

results show that the xaFCMs use less memory and computational time to achieve the same or, in some

cases, even more accurate results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Data compression models have been used to address several

data mining and machine learning problems, usually by means of

a formalization in terms of the information content of a string or

of the information distance between strings [1–5] . This approach

relies on solid foundations of the concept of algorithmic entropy

and, because of its non-computability, approximations provided by

data compression algorithms [6] .

A finite-context model (FCM) calculates the probability distribu-

tion of the next symbol, given the previous k symbols. In this work,

we propose an extension of the FCMs, which we call extended-

alphabet finite-context models (xaFCM). Usually, these models pro-

vide better compression ratios, leading to better results for some

applications, especially when using small alphabet sizes – and also

by performing much less computations. We show this in practice

for the ECG biometric identification and DNA sequence similar-

∗ Corresponding author.

E-mail address: joao.carvalho@ua.pt (J.M. Carvalho).

ity. The source code for the compressor was implemented using

Python 3.5 and is publicly available under the GPL v3 license. 1

1.1. Compression-based measures

Compression-based distances are tightly related to the Kol-

mogorov notion of complexity, also known as algorithmic entropy.

Let x denote a binary string of finite length. Its Kolmogorov com-

plexity , K (x), is the length of the shortest binary program x ∗ that

computes x in a universal Turing machine and halts. Therefore,

K(x) = | x ∗| , the length of x ∗, represents the minimum number of

bits from which x can be computationally retrieved [7] .

The Information Distance (ID) and its normalized version, the

Normalized Information Distance (NID), were proposed by Ben-

nett et al. almost two decades ago [8] and are defined in terms of

the Kolmogorov complexity of the strings involved, as well as the

complexity of one when the other is provided.

However, since the Kolmogorov complexity of a string is not

computable, an approximation (upper bound) for it can be used by

1 https://github.com/joaomrcarvalho/xafcm .

https://doi.org/10.1016/j.patrec.2018.05.026

0167-8655/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.patrec.2018.05.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.05.026&domain=pdf
mailto:joao.carvalho@ua.pt
https://github.com/joaomrcarvalho/xafcm
https://doi.org/10.1016/j.patrec.2018.05.026

50 J.M. Carvalho et al. / Pattern Recognition Letters 112 (2018) 49–55

means of a compressor. Let C (x) be the number of bits used by a

compressor to represent the string x . We will use a measure based

on the notion of relative compression [4] , denoted by C (x || y), which

represents the compression of x relatively to y . This measure obeys

the following rules:

• C (x || y) ≈ 0 iff string x can be built efficiently from y ;
• C (x || y) ≈ | x | iff K (x | y) ≈ K (x).

Based on these rules, the Normalized Relative Compression

(NRC) of the binary string x given the binary string y , is defined

as

NRC (x || y) =

C(x || y)
| x | , (1)

where | x | denotes the length of x .

A more general formula for the NRC of string x , given string

y , where the strings x and y are sequences from an alphabet A =

{ s 1 , s 2 , . . . s |A| } , is given by

NRC (x || y) =

C(x || y)
| x | log 2 |A| . (2)

2. Extended-alphabet finite-context models

2.1. Compressing using extended-alphabet finite-context models

Let A = { s 1 , s 2 , . . . s |A| } be the alphabet that describes the

objects of interest. An extended-alphabet finite-context model

(xaFCM) complies to the Markov property, i.e., it estimates the

probability of the next sequence of d > 0 symbols of the infor-

mation source (depth- d) using the k > 0 immediate past sym-

bols (order- k context). Therefore, assuming that the k past out-

comes are given by x n
n −k +1

= x n −k +1 . . . x n , the probability esti-

mates, P (x n + d
n +1

| x n
n −k +1

) are calculated using sequence counts that

are accumulated, while the information source is processed,

P (w | x n n −k +1) =

v (w | x n
n −k +1

) + α

v (x n
n −k +1

) + α|A| d (3)

where A

d = { w 1 , w 2 , . . . w |A| , . . . w |A| d } is an extension of alphabet

A to d dimensions, v (w | x n
n −k +1

) represents the number of times

that, in the past, sequence w ∈ A

d was found having x n
n −k +1

as the

conditioning context and where

v (x n n −k +1) =

∑

a ∈A d
v (a | x n n −k +1) (4)

denotes the total number of events that has occurred within con-

text x n
n −k +1

.

In order to avoid problems with “shifting” of the data, the se-

quence counts are performed symbol by symbol, when learning a

model from a string.

Parameter α allows controlling the transition from an estima-

tor initially assuming a uniform distribution to a one progressively

closer to the relative frequency estimator.

The theoretical information content average provided by the i th

sequence of d symbols from the original sequence x , is given by

− log 2 P (X i = t i | x id−1
id−k

) bits, (5)

where t i = x id , x id+1 . . . x (i +1) d−1 .

As testbed applications, we perform ECG biometric identi-

fication and compute a similarity measure between DNA se-

quences;After processing the first n symbols of x , the total number

of bits generated by an order- k with depth- d xaFCM is equal to

−
n/d ∑

i =1

log 2 P (t i | x di −1
di −k

) , (6)

Table 1

FCM representation of the sequence AAABCC .

Context c v (A | c) v (B | c) v (C | c) v (c) =

∑

a ∈A v (a | c)
BC 0 0 1 1

CA 1 0 0 1

AB 0 0 1 1

CC 1 0 0 1

AA 1 1 0 2

Table 2

Proposed xaFCM representation of the se-

quence AAABCC (with d = 1). Notice that this

model has exactly the same information as

the one in Table 1 .

Context c

BC C: 1 Total: 1

CA A: 1 Total: 1

AB C: 1 Total: 1

CC A: 1 Total: 1

AA A: 1 B: 1 Total: 2

where, for simplicity, we assume that n (mod d) = 0 .

If we consider a xaFCM with depth d = 1 , then it becomes a

regular FCM with the same order k . In that sense, we can consider

that a FCM is a particular case of a xaFCM.

An intuitive way of understanding how a xaFCM works is to

think of it as a FCM which, for each context of length k , instead

of counting the number of occurrences of symbols of A , counts

the occurrences of sequences w ∈ A

d . In other words, for each se-

quence of length k found, it counts the number of times each se-

quence of d symbols appeared right after it.

Even though, when implemented, this might use more memory

to represent the model, an advantage is that it is possible to com-

press a new sequence of length m , relatively to some previously

constructed model, making only m / d accesses to the model. This

significantly reduces the time of computation, as we will show in

the experimental results presented in Sections 3 and 4 .

Since, for compressing the first k symbols of a sequence, we do

not have enough symbols to represent a context of length k , we

always assume that the sequence is “circular”. For long sequences,

specially using small contexts/depths, this should not make much

difference in terms of compression, but as the contexts/depths in-

crease, this might not be always the case.

Since the purpose for which we use these models is to provide

an approximation for the number of bits that would be produced

by a compressor based on them, whenever we use the word “com-

pression”, in fact we are not performing the compression itself. For

that, we would need to use an encoder, which would take more

time to compute. It would also be needed to add some side infor-

mation for the compressor to deal with the circular sequences –

but that goes out of scope for our goal.

2.1.1. Example

Let x be the circular sequence AAABCC . Using a regular FCM

with k = 2 and α = 0 . 01 , we would build the model from Table 1

to represent x .

It is easy to notice that this representation can be implemented

using an hash-table of strings to arrays of integers with fixed size

(alphabet size +1). However, we propose a different alternative,

which consists of building a hash-table of hash-tables. The reason

for doing so is that often the number of counts of symbols for each

context is very sparse, which would be a waste of memory. To rep-

resent exactly the same model, we would build the structure pre-

sented in Table 2 .

Download English Version:

https://daneshyari.com/en/article/6940101

Download Persian Version:

https://daneshyari.com/article/6940101

Daneshyari.com

https://daneshyari.com/en/article/6940101
https://daneshyari.com/article/6940101
https://daneshyari.com

