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a b s t r a c t 

In the Restricted Set Classification approach (RSC), a set of instances must be labelled simultaneously into 

a given number of classes, while observing an upper limit on the number of instances from each class. 

In this study we expand RSC by incorporating prior probabilities for the classes and demonstrate the 

improvement on the classification accuracy by doing so. As a case-study, we chose the challenging task 

of recognising the pieces on a chessboard from top-view images, without any previous knowledge of the 

game. This task fits elegantly into the RSC approach as the number of pieces on the board is limited, and 

each class (type of piece) may have only a fixed number of instances. We prepared an image dataset by 

sampling from existing competition games, arranging the pieces on the chessboard, and taking top-view 

snapshots. Using the grey-level intensities of each square as features, we applied single and ensemble 

classifiers within the RSC approach. Our results demonstrate that including prior probabilities calculated 

from existing chess games improves the RSC classification accuracy, which, in its own accord, is better 

than the accuracy of the classifier applied independently. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Restricted Set Classification (RSC) refers to the following prob- 

lem. Given is a set containing m instances, X = { x 1 , . . . , x m 

} , where 

x j ∈ R 

n , j = 1 , . . . , m, is a data point in some n -dimensional space. 

Each instance must be labelled in one of c classes from the set 

� = { ω 1 , . . . , ω c } . It is known that the maximum number of in- 

stances from class ω i , present within X , is k i , i = 1 , . . . , c. Thus the 

cardinality of X must satisfy 1 ≤ | X| ≤ ∑ c 
i =1 k i . 

The solution to this problem is not straightforward. If a clas- 

sifier is trained and then applied for labelling the instances in 

X (called the ‘independent classifier’), the obtained labels are not 

guaranteed to meet the count constraints. Incorporating these con- 

straints into the classification process has been shown to lead to an 

improvement on the accuracy of the independent classifier [14,15] . 

Here we hypothesise that a further improvement can be achieved 

if prior probabilities depending on the whole of X are considered 

by the RSC set classifier. 

Examples of real-life RSC problems include recognising people 

in a group (e.g., for attendance monitoring of the students in a 

class [1] or for tracking [17] ) and identification of animals for the 

purposes of monitoring and conservation [7,13] . A particularly suit- 

∗ Corresponding author. . 

E-mail address: l.i.kuncheva@bangor.ac.uk (L.I. Kuncheva). 

able application is identifying the pieces on a chessboard from an 

image. When classifying chess pieces together , we can take advan- 

tage of the knowledge that there can only be a given number of 

objects from each class. For example, there can be at most eight 

white pawns on the board. In this paper, we chose chessboard 

recognition as an example to demonstrate the expected improve- 

ment on the classification accuracy of the independent classifier 

when using prior probabilities. 

The rest of the paper is organised as follows. The RSC approach 

is detailed in Section 2 . Our proposed extension is described in 

Section 3 . Section 4 contains our case-study which demonstrates 

the improvement of the proposed approach over the original RSC 

in recognising chess pieces on a board. Section 5 offers our conclu- 

sions and ideas for future work. 

2. Restricted Set Classification (RSC) 

RSC is detailed in Algorithm 1 . The RSC approach operates 

by applying a pre-trained classifier D to X to acquire estimates 

of the posterior probabilities for every instance within, and mak- 

ing an optimal label assignment while observing the count re- 

striction. The classifier D is termed the independent classifier as 

it is trained on independent, identically distributed (i.i.d.) data, 

and is oblivious to any count limits. This can be any classi- 

fier which returns estimates of the posterior probabilities, D (x ) = 

{ P D (ω 1 | x ) , . . . , P D (ω c | x ) } . Denoting the space of probability distri- 

https://doi.org/10.1016/j.patrec.2018.04.018 

0167-8655/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.patrec.2018.04.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.04.018&domain=pdf
mailto:l.i.kuncheva@bangor.ac.uk
https://doi.org/10.1016/j.patrec.2018.04.018


L.I. Kuncheva, J.H.V. Constance / Pattern Recognition Letters 111 (2018) 36–42 37 

Algorithm 1: Restricted Set Classification. 

Input : Pre-trained classifier D : R 

n → P (�) , the allowed 

number of instances from each class K = { k 1 , . . . , k c } , a 
set of instances to be classified together 

X = { x 1 , ..., x m 

} , x i ∈ R 

n . 

Output : Labels L for the instances in X . 

// acquire probability matrix P p 

1 for i ← 1 , . . . , m do 

2 P p (i, 1 : c) ← D (x i ) 

// construct augmented probability matrix P a 

3 P a ← ∅ . 
4 for i ← 1 , . . . , m do 

5 cc ← 1 // column counter 
6 for j ← 1 , . . . , c do 

7 for k ← 1 , . . . , k i do 

8 P a (i, cc) ← P p (i, j) 

9 cc ← cc + 1 

// find optimal label assignment M 

10 M ← hungarian-assignment( − log (P a ) ) 
11 L ← retrieve-labels( M) 

12 Return L . 

butions over � by P(�) , we have D : R 

n → P(�) . It is desirable 

that these estimates are well calibrated [5] . 

D can be a single classifier or a classifier ensemble itself, as 

long as the output is a probability distribution. Straightforward es- 

timates of the posterior probabilities from a classifier ensemble are 

the proportions of votes for the respective classes. 

The posterior probability estimates for all instances in X are or- 

ganised in an m × c “probability matrix” P p , where row i represents 

the probability distribution obtained from D for instance x i ∈ X . 

Subsequently, an augmented probability matrix, P a is constructed 

by repeating each column of P p as many times as the number 

of allowed instances from the corresponding class. For example, if 

k 1 = 3 and k 2 = 4 , the first three columns of P a will be copies of 

the first column of P p , followed by four copies of the second col- 

umn of P p . Thus the size of P a is m × q , where q = 

∑ c 
i =1 k i . We have 

previously proved [14,15] that the optimal assignment guarantee- 

ing the minimum Bayes error in labelling the whole of X requires 

that the product of the posterior probabilities is maximum, that is 

〈 ω 

∗
1 , ω 

∗
2 , . . . , ω 

∗
m 

〉 = arg max 
〈 ω (a ) 

1 
,ω (a ) 

2 
, ... ,ω (a ) 

m 〉 

m ∏ 

i =1 

P 
(
ω 

(a ) 
i 

| x i 

)
, (1) 

where ω 

(a ) 
i 

is the class label assigned to x i , and ω 

∗
i 

is the optimal 

label. This optimisation must be carried out subject to the con- 

dition that the number of labels for class ω j in the returned set 

must be no greater than the restriction constant k j , j = 1 , . . . , c. 

The construction of the augmented matrix with posterior proba- 

bilities guarantees the compliance with the constraints. In order to 

find the optimal 〈 ω 

∗
1 , ω 

∗
2 , . . . , ω 

∗
m 

〉 , we need a matching procedure. 

The Hungarian algorithm finds the optimal match which minimises 

the sum (or cost) of assignments. Therefore, in order to use this al- 

gorithm we convert the product in Eq. (1) into a sum of logarithms. 

As we are seeking to maximise this sum while the algorithm looks 

for minimum cost, we submit to the Hungarian algorithm the ma- 

trix with the negative logarithms P a . 

The output of the Hungarian algorithm is a binary matrix M of 

the same size as P a ( m × q ), containing 1s where rows are assigned 

the column label, and 0s elsewhere. Each row (instance in X ) has 

one and only one assigned column. The class label of the instance 

is retrieved by identifying which class label has given rise to the 

column in P a . In the above example, if a column between 1 and 3 

contains the 1 for the row, the label for the instance is ω 1 . Alter- 

natively, if the 1 is in one of the columns between 4 and 7, class 

ω 2 will be retrieved. 

The theoretical grounds and empirical evidence that the RSC 

works better than m independent applications of D to the elements 

of X are given in the original work [15] . Here we are interested 

in extending RSC to incorporate prior probabilistic information, as 

proposed next. 

3. Incorporating a conditional prior into RSC 

Suppose that by analysing a large prior database, we were able 

to obtain prior probabilities depending on some parameter of the 

set of instances X . This parameter can be, for example, the car- 

dinality of X or some relationship between the instances in X , 

θ = θ (X ) . Say, we are recognising the students in a class from a 

photo of the classroom. While the students can sit wherever they 

choose in the classroom, some usually pick the same seats. We can 

use a parameter such as 

θ = Sitting in the first row? (y/n) , 

and pre-calculate a prior probability for each student (class) con- 

ditioned on θ . The appearance of the student’s face in the photo, 

which would be their feature vector x , will not depend on θ . 

Denote by P P ( ω i | θ ) the conditional prior probability for class 

ω i , i = 1 , . . . , c. To integrate this probability within the probabili- 

ties obtained from the independent classifier, P D , we use 

P (ω k | x , θ ) = 

P (x , θ | ω k ) P (ω k ) 

P (x , θ ) 

Assuming independence between x and θ , 

P (ω k | x , θ ) = 

P (x | ω k ) P (θ | ω k ) P (ω k ) 

P (x ) P (θ ) 

= 

P (x | ω k ) P (ω k ) 

P (x ) ︸ ︷︷ ︸ 
posterior 

P (θ | ω k ) 

P (θ ) 

Multiplying and dividing by P ( ω k ), 

P (ω k | x , θ ) = P (ω k | x ) 
P (θ | ω k ) P (ω k ) 

P (θ ) 

1 

P (ω k ) 

= P (ω k | x ) 
P (ω k | θ ) 

P (ω k ) 
. 

Any estimate of the probabilities can be plugged in this equa- 

tion. In our case: 

P E (ω k | x , θ ) = P D (ω k | x ) ︸ ︷︷ ︸ 
from D 

P P (ω k | θ ) 

P P (ω k ) ︸ ︷︷ ︸ 
from the prior database 

. 

We may wish to control the influence of the conditional prior 

probability on the final posterior probability. Therefore we intro- 

duce a tunable parameter, β ∈ [0, 1], as follows: 

P E (ω k | x , θ ) = P D (ω k | x ) 

[
P P (ω k | θ ) 

P P (ω k ) 

]β

. (2) 

This probability distribution across the class labels � should be 

calculated for each instance x j ∈ X and used instead of D ( x j ) in con- 

structing P p in Algorithm 1 . 

Note that the conditional prior is only available in relation 

to the whole set X . Arguably, this probability extension can be 

thought of as coming from an extra classifier built upon an alter- 

native feature space containing only θ . 
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