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a b s t r a c t 

In this work, a novel nearest neighbor approach is presented. The main idea is to redefine the distance 

metric in order to include only a subset of relevant variables, assuming that they are of equal importance 

for the classification model. Three different distance measures are redefined: the traditional squared Eu- 

clidean, the Manhattan, and the Chebyshev. These modifications are designed to improve classification 

performance in high-dimensional applications, in which the concept of distance becomes blurry, i.e., all 

training points become uniformly distant from each other. Additionally, the inclusion of noisy variables 

leads to a loss of predictive performance if the main patterns are contained in just a few variables, since 

they are equally weighted. Experimental results on low- and high-dimensional datasets demonstrate the 

importance of these modifications, leading to superior average performance in terms of Area Under the 

Curve (AUC) compared with the traditional k nearest neighbor approach. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The k Nearest Neighbor ( k -NN) classifier [5] is a well-known 

pattern recognition method that has been used widely in several 

applications. Simplicity is its main virtue, allowing the classifica- 

tion of two or more patterns based on a quite simple rule: a test 

sample will belong to the class that the majority of its k nearest 

neighbors belongs to Han and Kamber [9] . 

Due to this simplicity, the k -NN method has several issues to 

deal with. Two main shortcomings, which are related to high- 

dimensional applications, are discussed in this paper. First, metrics 

such as the Euclidean distance may not be suitable in this context, 

since the concepts of distance and proximity are ill defined [10,20] . 

A second issue is feature relevancy: in contrast to methods such 

as logistic regression or Support Vector Machines, the feature im- 

portance cannot be derived with the original version of k -NN, and 

all variables are assumed to be equally important in obtaining the 

neighbors [9] . This fact can cause poor prediction if most variables 

are irrelevant, ‘diluting’ the patterns present in the relevant vari- 

ables. Nowadays, there are several applications that have hundreds 

or even thousands of potentially redundant or irrelevant variables. 

In most cases, all the information is collected at once, and it is not 

clear which variables are relevant a priori. For such applications, 

models are required for helping us disentangling the signal from 

the noise. 
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In this work, these two issues are taken into account in order to 

design robust k -NN classifiers for both low- and high-dimensional 

settings. Three different distance metrics (Euclidean, Manhattan, 

and Chebyshev) are studied and modified in order to incorporate 

only a subset of the available information. Filter methods for fea- 

ture selection are embedded in the definition of the distance met- 

ric, in order to encourage sparsity based on only the most relevant 

variables for the problem. 

The remainder of this paper is organized as follows: previous 

work on k -NN is discussed in Section 2 . The proposed frame- 

work for k -NN classification based on novel distance metrics is de- 

scribed in Section 3 . In Section 4 , experimental results using bi- 

nary classification datasets are given. Finally, the main conclusions 

of this study and ideas for future developments are presented in 

Section 5 . 

2. k-NN classification 

The k Nearest Neighbor method is arguably the simplest pat- 

tern recognition method for classification [9] . Given a fixed value 

for k , i.e., the number of neighbors, this nonparametric approach 

assigns the class label y ∗ to an unlabeled sample x ∗, which occurs 

most frequently in its neighborhood of k closest examples from the 

training set [5] . 

Formally, given two sets of m training tuples { ( x i , y i ) } m 

i =1 
, where 

x i ∈ � 

n and y i ∈ {−1 , +1 } are its respective class labels, and given 

mt test samples { x t 
l 
} mt 

l=1 
⊂ � 

n , this method first computes the dis- 

tance between an unlabeled sample x t 
l 

and all training examples 

x i , for i = 1 , . . . , m . Assuming a set S that contains all variables 
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( |S| = n ), the squared Euclidean distance is usually used for this 

task [9] : 

d l 2 ( x 

t 
l , x i ) = 

∑ 

j∈S 
(x t l, j − x i, j ) 

2 . (1) 

Next, the k training observations that are closest to x t 
l 

are 

selected, i.e., the k elements with lowest d l 2 ( x 
t 
l 
, x i ) for all i = 

1 , . . . , m . The label assigned to x t 
l 

is the most frequent one among 

these k elements. 

Several improvements to the traditional k -NN algorithm have 

been developed in recent years. One research line involves us- 

ing alternative distance measures for improving performance 

[17,26,27] or dealing with different types of data [4,6] . For exam- 

ple, a penalty dissimilarity measure was proposed in Datta et al. 

[6] in order to deal with missing information. Cost and Salzberg 

[4] proposed a weighted measure for handling symbolic features. 

Variations of the Minkowski distance have been used previously in 

domains such as anomaly [19] and intrusion detection for prevent- 

ing network attacks [17] . 

An important aspect of this research is adapting the k -NN 

distance metric for dealing with high dimensionality. Few stud- 

ies have been proposed in this direction. Hastie and Tibshirani 

[10] proposed a locally adaptive strategy to try to ameliorate 

this course of dimensionality in k -NN classification, and Pal et al. 

[20] proposed a dissimilarity measure based on mean absolute dif- 

ferences between inter-point distances. The latter strategy reduces 

the negative effects caused by a high dimensionality, such as the 

concentration of pairwise distances, thus improving predictive per- 

formance. 

A related research line uses the k -NN principles for perform- 

ing feature selection. Navot et al. [18] proposed a feature-weighted 

k -NN version for simultaneous regression and feature selection. 

This strategy was used to model cortical neural activity. Li et al. 

[13] developed an ensemble strategy based on various k -NN clas- 

sifiers, which were constructed based on random subsets of vari- 

ables. This approach, which resembles the reasoning behind ran- 

dom forest, can be used as feature ranking, and subsequently for 

performing backward feature elimination. Another feature selec- 

tion method that uses the ideas behind random forest and k -NN 

was proposed by Park and Kim [21] . 

Other heuristics have been used for performing feature selec- 

tion and k -NN classification. For example, Tahir et al. [23] proposed 

a hybrid approach based on a Tabu search for simultaneous feature 

weighting and classification. Lee et al. [12] used genetic algorithms 

for dealing with the issue of having various scales in the datasets. 

The authors proposed an efficient k -NN reference set editing strat- 

egy for maximizing accuracy, while reducing running times and 

memory resources. 

Efficiency has also been a relevant topic in the k -NN literature. 

Beliakov and Li [1] proposed an efficient strategy for replacing the 

sort operation, by using order statistics and parallel computing via 

GPUs. Li et al. [14] developed a strategy for reducing the number 

amount of target samples to be considered by creating partial sets 

of the nearest neighbors. 

3. Proposed strategy for nearest neighbor classification 

Dimensionality reduction is quite an important topic in pat- 

tern recognition. A low-dimensional data representation reduces 

the risk of overfitting by constructing simple models with few pa- 

rameters, yielding to a better predictive performance. It also pro- 

vides a better understanding of the outcome of the model while 

reducing storage and acquisition costs [15] . In pattern recognition 

and image processing, dimensionality reduction is related with fea- 

ture extraction, which corresponds to the process of constructing 

new features from the original dataset, aiming at reducing redun- 

dancy and identifying latent dimensions of the image that describe 

the data with sufficient accuracy. 

Most methods are able to deal with noisy/irrelevant features 

by either removing them during the model training, or weighting 

them down when constructing a separating hyperplane. Decision 

trees fall in the first category, while methods such as logistic re- 

gression, SVM, or ANN on the second. In contrast, k -NN weights all 

variables equally, and it is usually outperformed by these alterna- 

tive methods for this reason. 

The main idea of the proposed approach is to adapt the classic 

k -NN method in order to deal with the two main issues pointed 

out in the introduction: the course of dimensionality faced by dis- 

tance metrics such as the Euclidean norm, and the problem of hav- 

ing equal weights for all variables, which may lead to poor predic- 

tion if redundant or irrelevant variables, are included in the k -NN 

classification task. 

Our contribution is twofold: first, we propose variations of the 

Minkowski distance that are more suitable under conditions of 

high-dimensionality, such as the Chebyshev distance or l ∞ 

-norm. 

Additionally, we propose a modification of the Minkowski metric 

as the distance of two samples based only on a subset of the avail- 

able variables, demonstrating that this modified Minkowski dis- 

tance can, indeed, be considered as a distance measure. 

Formally, the following distance metric is proposed for a given 

set of variables U ⊂ S, which is a subset of the full set of features 

S, and two data objects x k ∈ � 

|S| for k = { 1 , 2 } : 

d l p , U ( x 1 , x 2 ) = ‖ x 1 − x 2 ‖ p, U = 

( ∑ 

j∈U⊂S 
| x 1 , j − x 2 , j | p 

) 1 /p 

, (2) 

for p ≥ 1. This distance is designed to be used with p ∈ {1, 2, ∞ }, i.e., 

the Manhattan, Euclidean, and Chebyshev distances, respectively. 

The proof that the proposed modified Minkowski distance satis- 

fies the various properties required for being a distance measure is 

presented in Appendix A (see online supplementary material). 

Next, the modified k -NN algorithm is proposed. The inputs of 

the model are the training samples { ( x i , y i ) } m 

i =1 
, the (unlabeled) 

test objects { x t 
l 
} mt 

l=1 
, a predefined number of nearest neighbors k , a 

predefined number of selected attributes r , and the Minkowski dis- 

tance parameter p ∈ {1, 2, ∞ }. The output is the label vector for the 

test samples. The proposed strategy is formalized in Algorithm 1 . 

Algorithm 1 Modified k -NN method. 

Input: Training tuples { ( x i , y i ) } m 

i =1 
; Test samples { x t 

l 
} mt 

l=1 
; Number 

of nearest neighbors k ; Feature ranking strategy F R ; Number of 

selected attributes r; Distance parameter p ∈ { 1 , 2 , ∞} . 
Output: Test labels { y t 

l 
} mt 

i =1 
. 

1: R ← Feature ranking resulting from using strategy FR on the train- 

ing samples . 

2: U ← subset of attributes corresponding to the r largest values of 

rank R . 

3: for l = 1 , . . . , mt do 

4: Compute the distance between the sample x t 
l 

and all 

the training samples x i , i = 1 , . . . , m , using the modified 

Minkowski distance d l p , U ( x 
t 
l 
, x i ) . 

5: N l ← Subset of the k nearest neighbors from the training set of 

the test sample x t 
l 
. 

6: y t 
l 
← Label corresponding to the mode in N l . 

7: end for 

The first step of the algorithm corresponds to the construction 

of the feature ranking R . This ranking is constructed by sorting the 

variables according to its relevancy using, e.g. statistical measures. 
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