
Pattern Recognition Letters 108 (2018) 1–7 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Ground segmentation and free space estimation in off-road terrain 

Mahmoud Hamandi, Daniel Asmar ∗, Elie Shammas 

Vision and Robotics Lab, American University of Beirut, Bliss Street, Beirut, Lebanon 

a r t i c l e i n f o 

Article history: 

Received 22 June 2017 

Available online 26 February 2018 

MSC: 

41A05 

41A10 

65D05 

65D17 

a b s t r a c t 

In this paper, we propose a novel approach for ground segmentation and free space estimation of out- 

door environments. The system is completely self-supervised and relies on two modules: the first module 

is built around a Fully Convolutional Network (FCN), and is used for ground segmentation after the sys- 

tem is initiated. The second module relies on depth information paired with interactive graphs cuts, and 

is used to train the FCN at startup, and anytime the FCN’s performance degrades during runtime. This 

usually happens when the camera observes a new type of outdoor scene, which is foreign to the FCN. 

Experiments were conducted on three datasets of different ruggedness to highlight the advantages of the 

proposed method. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

With the era of autonomous vehicles about us, scene under- 

standing is becoming ever more important. For autonomous nav- 

igation, one of the most fundamental scene understanding tasks is 

to delineate free space from obstacles, thereby allowing the vehicle 

to drive autonomously, and plan its path along its journey. 

Previous work on free space segmentation employ a variety of 

sensors such as active LIDARs and RADARs [7,20] . Because of their 

relatively low cost, and the high bandwidth of information they of- 

fer, vision-based solutions are also very popular for free space es- 

timation. Marks et al. [16] trained an offline classifier to segment 

ground in a short range stereo camera. Then they used the seg- 

mented ground as training data to segment longer range ground 

in a monocular image. Their method requires human supervision, 

and is not guaranteed to work in unseen environments that differ 

from the training data. 

Kühnl et al. [13] proposed to combine confidence maps gener- 

ated by three classifiers that detect road, boundary, and lanes, and 

accordingly segment monocular images of a road. However, their 

approach requires all three road elements to be present in each 

query image. 

Alvarez and Lopez [2] compute illuminant invariant images 

from the captured monocular ones, then assume that pixels at the 

root of the image can be used as training data to label the rest 

of the pixels. While this works for monotone roads, free space 

with more variant representations require a more elaborate train- 

ing data extraction algorithm. 
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Recently, Brust et al. [6] proposed a new technique to train a 

Convolutional Neural Network (CNN) for pixel-wise ground seg- 

mentation. The proposed technique processes each patch of the 

image with a CNN and then classifies the central pixel of that 

patch. In addition, Brust et al .noticed that the pixel’s position is 

a strong prior for the labeling, and as such incorporated the spa- 

tial prior as an input to the fully connected layers of the CNN. Al- 

though they showed promising results, their algorithm requires su- 

pervised human interaction in the form of hand labeled training 

data. As a solution, Sanberg et al. [19] extracted a self-supervised 

weak classifier to train the network, and proved that online train- 

ing of the network with the weak classifier can outperform both 

the weak classification and the offline trained network. However, 

their method requires high runtime because it requires online 

training of the network for each input image after extracting its 

weak classifier. 

Similarly, Alvarez et al. [1] train a semantic segmentation CNN 

with machine-generated labels on a generic dataset. Then combine 

the segmentation of the offline trained CNN with an online ex- 

tracted texture based classifier, using a Positive Naïve Bayes frame- 

work. 

The stated methods exploit either intensity data, or almost only 

depth data; however, stereo sensors allow one to exploit the com- 

plementarity of pixel intensity with object depth to produce robust 

segmentation solutions. 

Badino et al. [3] proposed the Stixel World representation, 

where the stereo image is first transformed into its polar coordi- 

nate representation. Then after calculating the occupancy of each 

pixel, final ground and obstacles are estimated using dynamic pro- 

gramming that imposes spatial smoothness between adjacent pix- 

els. Finally, obstacles are grouped into stixels, to provide a higher 
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order representation of the space, thus allowing simpler further 

processing of the obstacles. Many variations of the stixel world al- 

gorithm exist, such as the ones presented in [4,18] . 

Vernaza et al. [21] used a stereo sensor in a Markov Ran- 

dom Field framework to classify pixels in the image belonging to 

the ground plane. The largest planar region is assumed to be the 

ground plane, and pixels belonging to it are taken as ground pixels. 

Hadsell et al. [9] use the Hough transform up to three times to fit 

planes to stereo point clouds, while bounding the maximum slope 

a UGV can drive on, to find the points belonging to the ground 

plane. Konolige et al. [12] use Ransac plane fitting to determine 

points belonging to the largest plane in 3-D stereo generated point 

clouds, which is assumed to be the ground plane. These points are 

then used to supervise the classification of far away pixels in a 

monocular image. 

These training data extraction methods fail in scenarios where 

the ground plane is not the largest plane in the image. In con- 

trast, we propose in this paper a more robust method for extract- 

ing training data for our machine learning solution. The method 

relies on first processing stereo images to produce the v -disparity 

and u -disparity images [14] , which serve in the delineation of the 

ground plane. 

Recently, deep learning solutions have become popular ap- 

proaches for semantic segmentation, where fully connected lay- 

ers, and deconvolutional networks have been designed to segment 

scenes of arbitrary sizes [15,17] . However, these algorithms, in ad- 

dition to their protracted training time, might fail when confronted 

with unseen objects. 

In this paper, we propose a multi-level ground segmentation 

system: at a first level, training data for ground pixel are identi- 

fied using a self-supervised technique. At a second level, a deep 

network uses the data from the first level for training. The deep 

network is designed to adapt to different environments by relying 

on a weak classifier, which re-trains when its performance drops. 

The contributions of this paper are as follows: 

• The development of a novel technique to extract reliable 

ground patches in a stereo image pair without any offline train- 

ing. The method is self-supervised, near real-time, and operates 

in structured and unstructured environments. 
• An adaptive learning technique based on the decay of network 

performance. 
• Evaluation of the proposed technique, and comparison against 

the most relevant self-supervised techniques in the literature. 

The remainder of the paper is structured as follows: 

Section 2 provides the details of the proposed data extraction 

method, followed by the adaptive technique for online ground seg- 

mentation. Section 3 describes the experiments, and benchmarks 

our system to the state of the art. Finally, Section 4 concludes the 

paper. 

2. Architecture for ground segmentation 

In this section, we explain the components of the system archi- 

tecture. A Fully Convolutional Network (FCN) lies at the core of the 

segmentation ( Fig. 1 ). The network is first trained offline at sys- 

tem start-up, to match the labels generated by first-stage classifier 

(referred to as FSGC and discussed in Section 2.5 ). The network’s 

labels are then used online as ground data while being assessed 

with a weak classifier (referred to as PNB-RGBD). Both the training 

and the weak classifiers are detailed in Section 2.5.4 . The network 

is re-trained online whenever the FCN and the weak classifications 

do not match. 

2.1. Fully convolutional network 

A Fully Convolutional Network (FCN) [15] is a Convolutional 

Neural Network (CNN) in which all fully connected layers are re- 

placed with convolutional layers, thereby turning the network into 

a deep filter, without any decision layers. After being trained, the 

FCN can be used for segmentation by classifying each pixel into a 

category [15] . We opt for the FCN introduced by Brust et al. [6] , 

implemented in the CN24 framework. The network architecture is 

as follows: Conv (7 × 7 × 12); MaxP (2 × 2); ReLU; Conv (5 × 5 × 6); 

ReLU;Full(48x); ReLU;Full(192x); spatial prior; ReLU;Full(1x)+tanh. 

The CN24 library replaces the fully connected layers with their 

convolutional counterparts. The spatial prior was added by Brust 

et al. [6] , where the normalized row position of each pixel is added 

as an additional queue to the fully connected layers. The row posi- 

tion of the pixel can provide a strong prior of the pixel label, and 

they proved its advantage in ground segmentation. The above CNN 

architecture treats each pixel, with its neighbor, as a training point; 

thus for one image, we have an abundance of training data. While 

this is usually a good thing, the large amount of data from a single 

image can lead to over-fitting. 

2.2. Self-supervised training 

Self-supervised training is the process by which a first classifier 

(usually weak), supervises the training of a second classifier, which 

usually outperforms the weak classifier [19] , while exploiting data 

queues complementary to the weak one. 

Although it is computationally less expensive to train one clas- 

sifier offline and employ it to segment all ground representations, 

the variety of spaces the vehicle might traverse would drive the 

classifier to find a compromise between all representations, and 

thus reduces its efficacy for most. The self-supervised training ap- 

proach adopted here can provide a classifier that is specific for 

each scene, without the need to hand label thousands of images. 

We introduce a technique for Free Space estimation using 

Graph Cuts (hereafter named FSGC and detailed in Section 2.5 ), 

which is capable of training the FCN when required. To reduce 

the computational requirements of the system, the training is per- 

formed infrequently. FSGC has an advantage over other algorithms 

from the literature, as it can classify every pixel based on its inten- 

sity information while combining depth and color queues; other 

algorithms classify ambiguous pixels as obstacles or provides the 

nearest label. 

2.3. Offline training 

During system launch, the software acquires a small number 

of images, which are segmented using FSGC, and the resulting la- 

bels are used to train the FCN. As long as the ground represen- 

tation does not change, the resulting FCN is employed for ground 

segmentation; however, if it does, the FCN is fine-tuned online as 

shown in Section 2.4 . 

2.4. Online segmentation and training 

After the training of the FCN offline, the network is employed 

online to segment ground in the newly acquired images as shown 

in Fig. 1 . In addition, each image is segmented using a weak clas- 

sifier, assisted by its stereo data. Then the FCN segmentation is as- 

sessed for precision and recall, by assuming the weak classifier as 

ground truth. 

The precision and recall calculated would reflect the compat- 

ibility between the two classifications. The lack of compatibility 

( i.e., low precision and recall), suggest that at least one of the two 

classifiers cannot label the present scene correctly, thus the FCN 



Download English Version:

https://daneshyari.com/en/article/6940334

Download Persian Version:

https://daneshyari.com/article/6940334

Daneshyari.com

https://daneshyari.com/en/article/6940334
https://daneshyari.com/article/6940334
https://daneshyari.com

