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a b s t r a c t 

In this work, we present a simple, robust and fast method to the perspective- n -point (P n P) problem 

for determining the position and orientation of a calibrated camera from known reference points. Our 

method transfers the pose estimation problem into an optimal problem, and only needs to solve a 

seventh-order and a fourth-order univariate polynomial, respectively, which makes the processes more 

easily understood and significantly improves the performance. Additionally, the number of solutions of 

the proposed method is substantially smaller than existing methods. Experiment results show that the 

proposed method can stably handle all 3D point configurations, including the ordinary 3D case, the quasi- 

singular case, and the planar case, and it offers accuracy comparable or better than that of the state-of-art 

methods, but at much lower computational cost. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Determining the position and orientation of a calibrated camera 

from n 3D points and their 2D projections, which is also known 

as the perspective- n -point (P n P) problem [5] , has numerous appli- 

cations in computer vision and robotics. Examples include robot 

localization [6,8] , augmented reality [17] , structure-from-motion 

(SfM) [4] , spacecraft pose estimation during descent and landing 

[18,23] . Considering the importance of the P n P problem, a large 

amount of research effort has been devoted to solving this prob- 

lem over the past few decades. The existing P n P methods can be 

classified as iterative and non-iterative methods. 

Classical iterative methods formulate the P n P problem into a 

non-linear least-squares problem [15] , and then solve it using it- 

erative optimization methods, i. e., Gauss–Newton and Levenberg–

Marquardt [9] method. However, iterative methods are sensitive 

to the initialization, and are easily trapped into a local minimum, 

which will leads to poor accuracy, especially when no redundant 

points ( n ≤ 6) are available. 

For non-iterative methods, the traditional methods apply linear 

operations to obtain solutions, i. e., the DLT [1] and HOMO method 

[16] . Non-iterative methods have an advantage of less computing 

∗ Corresponding author. 

E-mail addresses: pingwangsky@gmail.com (P. Wang), guilixu2002@163.com (G. 

Xu). 

costs, but are sensitive to noise. Quan and Lan [21] and Ansar and 

Daniilidis [2] presented two linear solutions for the P n P problem, 

with respective computational complexity O ( n 5 ) and O ( n 8 ). How- 

ever, they are still inaccurate when n is small. On the contrary, 

they are very time-consuming when n is large. To overcome these 

problems, Lepetit et al. [12] introduced four virtual control points 

to represent the 3D reference points, and proposed the first lin- 

ear complexity method, named EP n P, with respect to the number 

of the points. EP n P is computationally efficient, but is inaccurate 

for n = 4 or 5, due to its underlying linearization scheme. To im- 

prove accuracy, Li et al. [14] proposed another non-iterative O ( n ) 

solution, named RP n P, which transfers the P n P problem into a sub- 

optimal problem by solving a seventh-order polynomial. RP n P is 

very efficient and works well for both non-redundant ( n ≤ 6) and 

redundant points cases. Hesch and Roumeliotis [7] developed the 

first globally optimal method (called DLS) with complexity O ( n ), 

which formulates the P n P problem into a multivariate polynomial 

system using the camera measurement equations, and employs the 

multiplication matrix to determine all roots of the system. Unfor- 

tunately, the accuracy of DLS is unstable because of the Cayley pa- 

rameterization, which has a singularity for any 180-degree rota- 

tions. To resolve these drawbacks, Zheng et al. [26] proposed the 

OP n P method, which adopts the non-unit quaternion parameteri- 

zation to replace the Cayley parameterization, and uses the Gröb- 

ner basis [11] to solve the P n P problem. To our knowledge, OP n P is 

one of the most accurate non-iterative methods until now. To ex- 
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Fig. 1. Illustration of the P n P problem. 

tend the scope of application, Kneip et al. [10] presented the UP n P 

method, which is applicable to both central and non-central cam- 

era systems [3] . However, its accuracy is worse than OP n P in some 

configurations. Recently, the P n P f [20,25] and P n P fr [19] methods 

were proposed to solve the pose estimation problem in the case of 

an uncalibrated camera. However, the accuracy of these methods 

is usually lower than the classical P n P method. 

The most recent works, i. e., DLS, OP n P, and UP n P method, for- 

mulate the P n P problem as a minimization problem, and then solve 

it using the Gröbner basis technique. However, the Gröbner basis 

technique needs to construct a large elimination template, because 

of the large number of unknowns and the high maximum degree 

of the P n P problem. This process takes significant time and is dif- 

ficult to assure reliability. All of these disadvantages will reduce 

overall performance and limit general understanding. 

In contrast to previous methods, in this paper we propose a 

simple, robust, and fast solution to the classical P n P problem. Our 

method transfers the P n P problem into an optimal one, that only 

needs to solve a seventh-order and fourth-order univariate poly- 

nomial without using the Gröbner basis technique. The number of 

the solutions for our method is substantially smaller than existing 

globally optimal methods, i. e., the DLS and OPnP method. All of 

these make the processes more easily applicable and significantly 

improve the performance. The experiment results show that our 

method can stably address all 3D point configurations, including 

the ordinary 3D case, quasi-singular case, and planar case. It also 

offers accuracy com parable to the leading methods, but at much 

lower computational cost. 

The rest of the paper is organized as follows. Section 2 presents 

the derivations of our method. Section 3 provides a thorough 

analysis of the proposed method by simulated experiments. 

Section 4 shows the real tests. Section 5 , finally, concludes the 

work. 

2. Proposed method 

As shown in Fig. 1 , suppose a reference point W i whose coor- 

dinates in the world frame and the normalized image plane are 

W i = [ X w 

i 
, Y w 

i 
, Z w 

i 
] T and f i = [ u i , v i , 1] T , respectively. Note that the 

superscript indicates the different coordinate frame, i. e., w indi- 

cates the world frame. Our goal is to retrieve the rotation matrix 

R and the translation vector t between the world frame and the 

camera frame using n ( n ≥ 4) reference points when the camera is 

calibrated. 

2.1. Building an object frame 

The first step involves the definition of a new, intermediate ob- 

ject frame from the 3D reference points. As shown in Fig. 1 , we 

choose the center of 
−−−→ 

W i W j as the origint O a , and create an inter- 

mediate frame [ O a − �
 X a , � Y a , � Z a ] , where 

�
 X a = 

W j − O a 

‖ W j − O a ‖ 

�
 Z a = 

�
 X a × [0 , 1 , 0] T 

‖ 

�
 X a × [0 , 1 , 0] T ‖ 

�
 Y a = 

�
 Z a × �

 X a 

‖ 

�
 Z a × �

 X a ‖ 

, (1) 

if | [0 , 1 , 0] T � X a | ≤ | [0 , 0 , 1] T � X a | , and 

�
 X a = 

W j − O a 

‖ W j − O a ‖ 

�
 Y a = 

[0 , 0 , 1] T × �
 X a 

‖ [0 , 0 , 1] T × �
 X a ‖ 

�
 Z a = 

�
 X a × �

 Y a 

‖ 

�
 X a × �

 Y a ‖ 

, (2) 

if | [0 , 1 , 0] T � X a | > | [0 , 0 , 1] T � X a | . 
Via the transformation matrix T wo = [ � X a , � Y a , � Z a ] 

T , the reference 

point W i = [ X w 

i 
, Y w 

i 
, Z w 

i 
] T can be easily transformed into the inter- 

mediate frame using 

P i = T wo (W i − O a ) i = 1 , 2 , . . . , n, (3) 

where P i = [ X 
p 
i 
, Y 

p 
i 

, Z 
p 
i 

] T , and the superscript p indicates the inter- 

mediate object frame. 

2.2. Determining a rotation axis using least-square residual 

Every remaining point together with the P i and P j forms a 

3-point subsets. By using the P3P (perspective-three-point) con- 

straint [13] , each subset can build a fourth-order polynomial as fol- 

lows: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f 1 (x ) = a 1 x 
4 + b 1 x 

3 + c 1 x 
2 + d 1 x + e 1 = 0 

f 2 (x ) = a 2 x 
4 + b 2 x 

3 + c 2 x 
2 + d 2 x + e 2 = 0 

. . . 

f n −2 (x ) = a n −2 x 
4 + b n −2 x 

3 + c n −2 x 
2 + 

d n −2 x + e n −2 = 0 

. (4) 

Instead of directly solving a series of fourth-order polynomi- 

als, a cost function F = 

∑ n −2 
i =1 f 2 

i 
(x ) is defined as the square sum 

of these polynomials. The minima of F can then be determined by 

finding the roots of its derivative F ′ = 

∑ n −2 
i =1 f i (x ) f ′ 

i 
(x ) = 0 . F ′ is a 

seventh-order polynomial, which has at most 4 minima, and can 

be easily solved by the eigenvalue method [22] . Once the minimal 

of F is determined, the depths of P i and P j can be calculated ac- 

cording to the P3P constraint [13] , and then the rotation axis Z a 

can be calculated as Z a = 

−→ 

P i P j / ‖ P i P j ‖ . 
2.3. Retrieving the pose by solving an optimal problem 

When the Z a -axis of [ O a − �
 X a , � Y a , � Z a ] is determined, the transfor- 

mation from the intermediate object frame [ O a − �
 X a , � Y a , � Z a ] to the 

camera frame [ O c − �
 X c , � Y c , � Z c ] can be expressed as 

λi f i = R c P i + t c i = 1 , 2 , . . . , n, (5) 

where 

R c = R 1 R 2 = 

[ 

r 1 r 2 r 3 
r 4 r 5 r 6 
r 7 r 8 r 9 

] [ 

1 0 0 

0 x −y 
0 y x 

] 

and t c = [ t 1 , t 2 , t 3 ] 
T . R 1 is an arbitrary rotation matrix whose third 

column [ r 3 , r 6 , r 9 ] 
T equals the rotation axis Z a , and R 1 should meet 

the orthogonal constraint of the rotation matrix. R 2 denotes a rota- 

tion of α degrees around the Z − axis, with x = cosα and y = sinα. 
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