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a b s t r a c t 

Star Coordinate Plot is a simple and efficient technique for visualizing multidimensional data. Since the 

proposal of this method in early 20 0 0, several researchers have attempted to address its weakness of 

tending to project data points toward the origin of the star coordinate space. But so far no one has 

provided a critical analysis of the issue in the literature. As a result, the weakness of Star Coordinate Plot 

is still not well understood. In this paper, we first provide an explanation of its weakness by pointing 

out two design constraints in the original Star Coordinate Plot. We show how these constraints result in 

three categories of data points that are lost in the process of translating from n -dimensional space to a 

two-dimensional star coordinate space. We then propose the Enhanced Star Coordinate data visualization 

method to address these constraints. Our experimental results show that the proposed method is superior 

to the original Star Coordinate Plot on several datasets used for evaluations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Visual analytics is an effective and intuitive approach for un- 

covering interesting and useful patterns in data [1,2] . A key com- 

ponent of visual analytics is data visualization [3] , which helps 

analysts gain insights into complex multi-dimensional data [4,5] . 

When it comes to understanding and analyzing real-world data, 

visualization can be used to complement the more sophisticated 

data mining methods, such as support vector machines [6] and 

neural networks [7] . 

This paper examines the Star Coordinate (SC) Plot [8] , a data vi- 

sualization technique that represents an n -dimensional data space 

using a two-dimensional radial plot. Such a plot has n axes, namely 

A 1 , A 2 , …, A n . Let there be an imaginary horizontal reference line 

R with an arbitrary point as the origin. All the axes here are ra- 

dial lines starting from the origin. An axis, A i , is to incline at an 

angle of 2( i −1) π / n with R . This arrangement makes the axes of an 

SC Plot to be equally spaced by an angle of 2 π / n . Each axis has a 

range of [0, 1], with value zero at the origin, and value one at the 

other end of the axis. 

SC Plot has two strengths. Firstly, it is a simple method that can 

easily be implemented and extended for more complex data visu- 

alization tasks. One example of extension is the three-dimensional 

SC Plot [9] . Secondly, SC Plot requires only constant time to render 

each data point, giving it a nice property of linear time complex- 
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ity with respect to data size. This makes it a good candidate for 

real-time, data-intensive visualization applications. 

Fig. 1 shows how a four-dimensional data point V is mapped to 

a point V 

∗ in a two-dimensional SC Space, and this is achieved by 

adding up the four normalized components of V (which are shown 

as green arrows) within the SC Space. 

However, we will show that there are conditions under which 

non-zero data vectors can be mapped to the origin of SC space. 

This problem results in a loss of visual information when display- 

ing data pattern on the visualization output. 

In a typical Cartesian Coordinate system, every axis is a num- 

ber line that shares the same origin. For each number line, one 

side of its origin represents positive numbers, and the other side 

represents negative numbers. However, in SC Plot, every dimen- 

sion is represented by a single axis scaled to a range of [0, 1] us- 

ing min–max normalization. In other words, every component of a 

vector, including those with negative values, will be normalized to 

a range of [0, 1]. This means that additions of normalized vector 

components within the SC space can become less meaningful. This 

is the first design constraint of SC Plot. 

The second design constraint is concerned with the placement 

of two (statistically) independent dimensions in exact opposite di- 

rections (e.g., refer to dimensions A 2 and A 4 in Fig. 1 ). Such a 

placement tacitly assumes that one dimension (e.g., A 2 ) is the ex- 

act opposite of the other (e.g., A 4 ), which may not necessarily 

be the case. If A 2 and A 4 are two independent attributes, then 

they must not offset one another when summating the vector 

components. 

To address the above constraints, we first introduce a sign- 

preserving data normalization technique that scales the data to a 
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Fig. 1. Star Coordinate projection of a four-dimensional data point to a two- 

dimensional point V ∗ within SC Space. (This diagram has been adapted from 

[9] ).(For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

bounded range of [ −1, 1]. We then include a negative region on 

the plot, which allows vectors to be displayed meaningfully. At the 

same time, this arrangement does away with the need to place in- 

dependent axes in exact opposite directions. 

The rest of this paper is organized as follows. Section 2 pro- 

vides a systematic analysis of the weakness of the original SC Plot. 

Section 3 describes the proposed method. Section 4 presents ex- 

perimental setup and results. Section 5 discusses related work and 

Section 6 concludes this paper. 

2. Blind spots of the original star coordinate space 

Recall that we have discussed two constraints in the original SC 

Plot. The first constraint is concerned with the fact that the signs of 

negative data values are not preserved in min–max normalization. 

The normalization process causes each axis to have a range of [0, 

1]. As a result, vector algebra cannot be meaningfully applied to 

any normalized vector component that is originally negative. 

The second constraint is concerned with the placement of two 

independent dimensional axes in exact opposite directions, which 

can result in less precise presentation of data patterns on an SC 

Plot. Rightfully, two independent dimensions shall be placed on 

two orthogonal axes. Although it is expedient to relax this rule in 

exchange for more dimensions to be represented on an SC Plot, we 

should still follow this rule as much as possible. 

The above constraints result in three undesirable situations 

where certain non-zero data points in the original data space are 

erroneously projected to a zero vector (i.e., the origin) in the star 

coordinate space. We name such data points as blind spots . 

To facilitate the following discussions, we define some nota- 

tions. Let D be an n -dimensional data space. Let V = ( v 1 , v 2 , …, v n ) 

in D be a non-zero data vector to be mapped to a point V 

∗ in the 

star coordinate space S . And the origin of S is denoted as 0 . Let 

min i and max i be the minimum and maximum values in dimen- 

sion i , respectively. That is, for m data points in D , min i = min{ v i 1 , 

v i 2 , …, v i m 

}, and max i = max{ v i 1 , v i 2 , …, v i m 

}. Finally, let the angle 

θ = 2 π / n . 

The first type of blind spots arises from the application of min–

max normalization that scales each dimension to a range of [0, 1], 

as shown in Proposition 1 . 

Proposition 1. If all the component values of V are the minimum 

values of their respective dimensions (i.e., v i = min i ∀ i ∈ {1, 2, …, n }) , 

then V 

∗ = 0 in S . 

Proof. The min–max normalization of any component value v i of 

a vector is defined as: 

v ∗i = ( v i − min i ) / ( max i − min i ) . 

And the x and y coordinates of V 

∗ are respectively defined as: 

x = 

∑ n 
i = −1 v ∗i cos (iθ ) , and 

y = 

∑ n 
i =1 v ∗i sin (iθ ) . 

If v i = min i then v ∗
i 

= 0 v i = 0, ∀ i ∈ {1, 2, …, n }. 

Hence x = y = 0, and V 

∗ = 0 in S �

The second type of blind spots are original data vectors that 

contain all the same component value. To prove such blind spots, 

we use the following known results on the finite sums of sine and 

cosine functions [10] . 

Lemma 1. For any integer n ≥ 1 , the following sine-series and cosine- 

series hold. 

(1) 
n ∑ 

i =1 

sin iθ = ( cos θ2 − cos ( n + 

1 
2 ) θ ) / 2 sin 

θ
2 

(2) 
n ∑ 

i =1 

cos iθ = ( sin ( n + 

1 
2 ) θ − sin 

θ
2 ) / 2 sin 

θ
2 

Proposition 2. If V contains the same value for all its normalized 

components (i.e., v ∗1 = v ∗2 = . . . = v ∗n = c, where c is some constant), 

then V 

∗ = 0 in S . 

Proof. The x coordinate of V 

∗ is: 

x = c 
n ∑ 

i =1 

cos (iθ ) . Since θ = 2 π / n and using (2) from Lemma 1 , 

we get: 

2 sin 

(
π

n 

)
x = c 

[ 
sin 

(
n + 

1 

2 

)
2 π

n 

− sin 

π

n 

] 

= c 

[ 
sin 

(
2 π + 

π

n 

)
− sin 

π

n 

] 

= c 

[ 
sin 2 π · cos 

π

n 

+ cos 2 π · sin 

π

n 

− sin 

π

n 

] 

= c 

[ 
sin 

π

n 

− sin 

π

n 

] 
= 0 . 

Similarly, the y coordinate of V 

∗ is: 

y = c 
n ∑ 

i =1 

sin iθ ) . Using (1) from Lemma 1 , we get: 

2 sin 

(
π

n 

)
y = c 

[ 
cos 

π

n 

− cos 

(
n + 

1 

2 

)
2 π

n 

] 

= c 

[ 
cos 

π

n 

− cos 

(
2 π + 

π

n 

)] 

= c 

[ 
cos 

π

n 

− cos 2 π . cos 
π

n 

+ sin 2 π · sin 

π

n 

] 

= c 

[ 
cos 

π

n 

− cos 
π

n 

] 
= 0 . 

Since x = y = 0, and V 

∗ = 0 in S . �

The third type of blind spots are original data vectors that con- 

tain the same component value in each pair of dimensions where 

axes are placed directly opposite in the star coordinate space. 

Proposition 3. Let D be an n-dimensional data space where n is 

even. Let any two dimensions in D that are positioned directly oppo- 

site of one another in S be A i and A i + n /2 , we would then expect � ( A i , 

A i + n /2 ) = π . If V contains identical normalized component values in 

each possible pair of A i and A i + n/2 (i.e., v ∗
i 

= v ∗
i + n/ 2 

), then V 

∗ = 0 in 

S . 

Proof. The x and y coordinates of V 

∗ are: 

x = 

n ∑ 

i =1 

v ∗i cos (iθ ) = 

n/ 2 ∑ 

i =1 

v ∗i [ cos (iθ ) + cos (iθ + π)] , 
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