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a b s t r a c t 

In many logistic regression tasks, auxiliary information about the covariates is available. For example, a 

user might be able to specify a similarity measure between the covariates, or an embedding (feature 

vector) for each covariate, which is created from unlabeled data. In particular for text classification, the 

covariates (words) can be described by word embeddings or similarity measures from lexical resources 

like WordNet. We propose a new method to use such embeddings of covariates for logistic regression. 

Our method consists of two main components. The first component is a Gaussian process (GP) with a 

covariance function that models the correlations between covariates, and returns a noise-free estimate of 

the covariates. The second component is a logistic regression model that uses these noise-free estimates. 

One advantage of our model is that the covariance function can be adjusted to the training data using 

maximum likelihood. Another advantage is that new covariates that never occurred in the training data 

can be incorporated at test time, while run-time increases only linearly in the number of new covariates. 

Our experiments demonstrate the usefulness of our method in situations when only small training data 

is available. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Classification is ubiquitous in many applications in machine 

learning and statistics. However, for small training data, classifica- 

tion performance is often insufficient, and, as a consequence, sev- 

eral types of additional knowledge is included: 

• unlabeled data using semi-supervised learning techniques [1] , 
• assumptions about the generation process of the data [2] , 
• auxiliary information about samples [3] , 
• auxiliary information about covariates [4] . 

Here, in this work, we focus on incorporating auxiliary infor- 

mation about covariates that are given in the form of similarity in- 

formation or embeddings. For text classification, where covariates 

are single words, covariate embeddings can be easily acquired from 

unlabeled documents using, for instance, word2vec [5] or GloVe 

[6] . Alternatively, similarities between covariates can be manually 

defined, and are available in resources like WordNet [7] . In the lat- 

ter case, covariate embeddings can be easily learned using spectral 
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decomposition of similarity matrices (see Supplementary Material, 

Section 2 ). 

In order to incorporate the knowledge of covariates into logistic 

regression, we propose to model the interaction of the covariates 

by a Gaussian process (GP). The use of a Gaussian process allows 

us to directly model the joint covariate distribution by an appro- 

priate covariance function that depends on the covariate embed- 

dings. Our model assumes that the true (unknown) value of the 

covariates are generated from a GP, and the observed values are 

due to additive noise. By recovering the true covariate values, our 

model is able to adjust also values of related covariates that are 

not observed in the sample. In particular, for text classification, our 

method finds positive weights of semantically related words that 

do not explicitly occur in the document. Our proposed method per- 

forms effectively a kind of smoothing of the covariate vector that 

is controlled by the parameters of the covariance function and the 

noise variance. 

Previous work using such covariate information mainly con- 

centrates on designing ontology-specific kernels [4,8] or semantic 

smoothing kernels from unlabeled data that cannot be adjusted to 

the labeled training data at hand [9,10] . Wittek and Tan [11] pro- 

poses a wavelet kernel that can incorporate distance information 

between covariates. However, their method requires to create a 
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one-dimensional ordering of the covariates which can be inappro- 

priate for some applications. 

One simple method to use word embeddings for classification is 

to use the average [12] or weighted-average [13] of the word em- 

beddings to represent a document. Our method compares favor- 

able to such methods while at the same time enjoying the same 

good interpretability as a bag-of-words model (for an example, see 

Table 3 ). 

A different solution, which is able to directly use a similarity 

measure between covariates, is known as bag-of-clusters (BOC), 

where similar covariates are grouped together [14,15] . However, 

fixing the clusters a-priori can be disadvantageous and can result 

in lower accuracy (as confirmed by our experiments in Section 3 ). 

If large amount of training data is available, then a natural 

choice is to use neural network models for classification like sug- 

gested in [16,17] . However, due to their high number of model pa- 

rameters, these models are not appropriate for small training data 

sets which is the focus of this work. 

2. Proposed method 

Let x = (x 1 , . . . , x p ) 
T be the vector of p observed covariates, and 

y be the response variable. Furthermore, e j ∈ R 

h denotes the em- 

bedding of covariate j , and E = (e 1 , . . . , e p ) denotes the matrix of 

all covariate embeddings. Our proposed method assumes that the 

covariates (x 1 , . . . , x p ) 
T are disrupted by noise, and that E helps to 

recover a (true) noise-free covariate vector f = ( f 1 , . . . , f p ) 
T . For- 

mally, we model p ( y | x ) as follows: 

p(y | x , ψ , θ) = 

∫ 
f 

p(y | f , ψ ) p(f | x , E, θ) , (1) 

where p ( y | f, ψ) is modeled by a logistic regression model (with 

parameter vector ψ) using the noise-free covariate vector f , and 

p ( f | x , E , θ) is a Gaussian process model (with parameter vector θ) 

for recovering the noise-free covariate vector. The conditional in- 

dependence assumptions of our model are shown in Fig. 2 . 

Since the calculation of the integral is infeasible, we approxi- 

mate Eq. (1) as follows 

p(y | x , ψ , θ) = 

∫ 
f 

p(y | f , ψ ) p(f | x , E, θ) 

≈
∫ 

f 

p(y | ̂ f , ψ ) p(f | x , E, θ) 

= p(y | ̂ f , ψ ) , 

where 

ˆ f = argmax 
f 

p(f | x , E, θ) . 

We note that the relationship between Eq. (1) and its ap- 

proximation, is analogously to the relationship between a fully 

Bayesian posterior predictive distribution and a maximum-a- 

posterior (MAP) predictive distribution. 

In the following, we explain in detail our model for p ( f | x , E , 

θ) ( Section 2.1 ), the combined logistic regression model p(y | ̂ f , ψ ) 

( Section 2.2 ) and how to estimate the parameters ψ and θ from 

the training data ( Section 2.3 ). 

2.1. Recovering the noise-free covariate vector 

We assume that f is a function of the covariate embedding. Let 

f denote the function that maps the covariate embedding of covari- 

ate j to its value f j , i.e. f j = f (e j ) , where e j ∈ R 

h is the embedding 

of covariate j . 

We assume that f j ∈ R is distributed according to a Gaus- 

sian process with a fixed mean m j ∈ R and covariance function 

k (e j 1 , e j 2 ) . As covariance function, we use the squared exponential 

covariance function 

k (e j 1 , e j 2 ) = exp 

(
− 1 

2 l 2 
· r 2 j 1 , j 2 

)
, 

where l defines the characteristic length scale [18] . Here, we set 

r j 1 , j 2 
to the euclidean distance between the covariates j 1 and j 2 , 

i.e. 

r j 1 , j 2 := || e j 1 − e j 2 || 2 . 
The above choice of the covariance function achieves that two co- 

variates have similar values, if their embeddings are similar. 

Furthermore, we make the assumption that the true, but unob- 

served, covariate value f j is disturbed by isotropic Gaussian noise, 

leading to the observed covariate value x j . In summary, our gener- 

ative model can be written as: 

1. Sample f from a GP 

f ∼ GP (m j , k (e j 1 , e j 2 )) . 

2. Add isotropic noise 

x j = f (e j ) + ε , 

where the noise ε is sampled from N (0, σ 2 ). 

Given a sample with covariate vector x = (x 1 , . . . , x p ) 
T ∈ R 

p , our 

goal is to get an estimate of the true covariate value f j . We choose 

as a point-estimate of f j the maximum a posteriori (MAP) estimate. 

It is easy to show 

1 that p( f j | x 1 , . . . , x p ) is a Gaussian distribution 

with mode argmax f j p( f j | x 1 , . . . , x p ) equaling 

m j + k 

T 
j (K l + σ 2 I) −1 (x − m ) , (2) 

where m = (m 1 , . . . , m p ) ∈ R 

p is the mean of the GP, and I ∈ R 

p×p 

is the identity matrix. The co-variance matrix K l ∈ R 

p×p is defined 

by 

K l j 1 , j 2 
:= k (e j 1 , e j 2 ) . 

The vector k j ∈ R 

p denotes the j th column vector of covariance 

matrix K l . Assuming that the mean of each sample is close to 0, 

or alternatively, the data is centered, we can use a zero mean GP. 

This way, we can get an estimate of the noise-free covariate vector 

by left-multiplication of x with the smoothing matrix S θ defined 

as 

S θ := K l (K l + σ 2 I) −1 , 

where θ denotes the covariance parameters { l, σ }. We note that 

S θ can be calculated in advance at training time. The calculation 

of S θ is feasible for more than 10k covariates by using Cholesky 

factorization. In summary, using Eq. (2) , our noise-free estimate of 

the covariate vector is 

ˆ f := argmax 
f 

p(f | x , E, θ) = S θx . (3) 

The proposed method has the desired effect that covariates that 

are related to many other covariates that have high observed val- 

ues, will also get high values. For example, in text classification, 

words that are related to the document but have zero value (e.g. 

words that did not occur in the document) will get positive values. 

To illustrate the effect, let us consider an example document 

which contains two words: “funny” and “tears” both with value 5 

(e.g. tf-idf weight). The text does not contain the words “melan- 

cholic”, “sad”, and “humor”, i.e. these values are 0. Furthermore, 

only for illustration, assume that the covariate embeddings are 

one-dimensional, then the observed value of each covariate can be 

illustrated as shown on the left-hand side of Fig. 1 . For example, 

1 See e.g. [18] page 27. 
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