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ABSTRACT

As a commonly used data representation technique, Nonnegative Matrix Factorization (NMF) has received
extensive attentions in the pattern recognition and machine learning communities over decades, since its
working mechanism is in accordance with the way how the human brain recognizes objects. Inspired by
the remarkable successes of manifold learning, more and more researchers attempt to incorporate the
manifold learning into NMF for finding a compact representation,which uncovers the hidden semantics
and respects the intrinsic geometric structure simultaneously. Graph regularized Nonnegative Matrix Fac-
torization (GNMF) is one of the representative approaches in this category. The core of such approach
is the graph, since a good graph can accurately reveal the relations of samples which benefits the data
geometric structure depiction. In this paper, we leverage the sparse representation to construct a sparse
hypergraph for better capturing the manifold structure of data, and then impose the sparse hypergraph
as a regularization to the NMF framework to present a novel GNMF algorithm called Sparse Hypergraph
regularized Nonnegative Matrix Factorization (SHNMF). Since the sparse hypergraph inherits the mer-
its of both the sparse representation and the hypergraph model, SHNMF enjoys more robustness and
can better exploit the high-order discriminant manifold information for data representation. We apply
our work to address the image clustering issue for evaluation. The experimental results on five popular
image databases show the promising performances of the proposed approach in comparison with the
state-of-the-art NMF algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, many studies indicate that the high-dimensional data
actually resides on a low-dimensional manifold and such intrin-

Nonnegative Matrix Factorization (NMF) is a considerable mul-
tivariate analysis technique for data analysis [13,16,26]. It learns
a part-based representation of the data via finding two nonneg-
ative matrices whose product provides a good approximation to
the original matrix. In NMF, the nonnegative constraints lead to a
parts-based representation because they allow only additive, not
subtractive, combinations. And such way is in accordance with the
recognition way of the human brain [3,13]. Due to its good psy-
chological and physiological interpretation, NMF has been in vogue
for decades and successfully applied to a wide range of domains
such as computer vision, machine learning and pattern recognition
[15,17,22,30,33,36].
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sic geometric structure of data is very useful for discriminating
data [2,23]. Over decades, extensive classical manifold learning ap-
proaches have been presented, such as Locally Linear Embedding
(LLE) [23], Laplacian Eigenmapping (LE) [2] and Neighborhood Pre-
serving Embedding(NPE) [8]. Graph learning is a popular technique
for manifold learning. In graph learning, the manifold learning is-
sue is considered as a graph cut issue [27]. The core of graph learn-
ing approaches is graph which encodes the relations of samples.
During the graph partition, such relations of samples should be
preserved as more as possible [2,9]. And then the manifold of data
can be well kept.

In the last decade, some researchers are aware of the impor-
tance of manifold information and try to incorporate such desirable
property into NMF [3,7,29-31,36,37]. Graph regularized Nonnega-
tive Matrix Factorization (GNMF) should be one of the represen-
tative approaches in this category [3]. In GNMF, a graph is lever-
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aged to depict the neighborhood relation of data, and then intro-
duced to NMF as a graph regularization for considering the local
geometric structures preservation during the matrix factorization.
The graph construction is very crucial for GNMFE. Since the graph
used in GNMF is the common graph whose edge only can con-
nect two vertices, GNMF can only capture the simple pairwise rela-
tion of data and clearly neglect the high-order relation among the
samples. To address this issue, Zeng et al.[36] presented the Hy-
pergraph regularized Nonnegative Matrix Factorization (HNMF) for
image clustering via using hypergraph instead of graph to depict
the data structure. The reason why HNMF can address such prob-
lem is that hypergraph is a generalization of graph and its edge
can connect any number of vertices [38]. In order to better address
the hyperspectral unmixing task, Wang et al.[31] introduces a con-
ventional hypergraph regularization to L;,-NMF for better exploit-
ing spectral-spatial joint structure of hypespectral image. Gener-
ally speaking, a graph can only depict one relation (or measure) of
samples. However, in most of time, it is very hard to pick up a suit-
able data relation to address different issues. Wang et al.[30] alle-
viated this problem by presenting Multiple Graph regularized Non-
negative Matrix Factorization (MultiGrNMF). In MultiGrNMF, mul-
tiple graphs, which encode different data relations, are combined
as a combative graph regularization for constraining NMF. These
graphs are deemed as a series of initial guesses of the optimal
graph Laplacian. And, finally, the optimal combination of graphs
can be conditionally learned by ensemble manifold regularization
technique [6]. The main drawback of MultiGrNMF over other GNMF
algorithms is that it is very time consuming to construct multiple
graphs. Moreover, from the perspective of graph embedding [28],
many constrained NMF algorithms actually can be formulated as a
specific GNMF algorithm [14,24,32].

In HNMF or GNMF algorithms, a good graph (or hypergraph)
is an important key towards to the success, since a high-quality
graph can well reveal the real relations among samples and these
relations are the crucial cues for data analysis. In GNMF or graph
learning approaches, the k-nearest neighbor is the most commonly
adopted method for graph (or hypergraph) construction. However,
many studies have shown such graph construction fashion is sen-
sitive to noise and often cannot correctly reflect the real relation of
samples. Recently, motivated by the advancements of Sparse Rep-
resentation (SR) [12], some researchers have attempted to lever-
age sparse representation for constructing the high quality graph.
The sparse representation-based graph is often called sparse graph
or Ly-graph. Since it inherits the merits of SR which is very dis-
criminative and robust to noise, the sparse graph works have al-
ready achieved remarkable success in many domains [4,11]. We be-
lieve the success of sparse graph can be also applied to HMMF
and GNMFE. So, in this paper, we focus on applying sparse rep-
resentation to construct a more robust and discriminative hyper-
graph for constraining NMF. We call such novel NMF algorithm
Sparse Hypergraph regularized Nonnegative Matrix Factorization
(SHNMF). Since the sparse representation-based hypergraph inher-
its the merits from both the hypergraph and the sparse represen-
tation, SHNMF enjoys more desirable properties and has a much
better performance over the conventional GNMF and HNMF algo-
rithms. Moreover, SHNMF is different to the other conventional
sparse GNMF, such as Hypergraph regularized L;;,-NMF [31] or
Graph regularized L;;,-NMF algorithms [18], which emphasize on
the sparsity of loading matrix. However, SHNMF emphasizes on
the sparsity of the hypergraph whose main idea is to leverage the
sparse representation to construct a high-quality hypergraph for
regularizing NMF. We adopt five popular image databases to eval-
uate the data representational power of SHNMF. The experimental
results demonstrate the superiority of SHNMF in comparison with
the state-of-the-art NMF algorithms.

The rest of paper is organized as follows: the background
knowledge and some basic notations are introduced in Section 2.
Section 3 presents the methodology of our work; The experimental
results are analyzed and discussed in Section 4; the conclusion is
finally summarized in Section 5.

2. Preliminaries

Let us denote a set of n samples as a [ x n-dimensional matrix
X = [xq1,---,xn] where ¥x; is the ith sample which is corresponding
to the ith column of matrix X. In the matrix factorization task, the
sample matrix can be approximately factorized as X~ WUT where
the [ x m-dimensional matrix W = [wq,---,wp], m<I is denoted
as the bases (the basis vectors) while the n x m-dimensional ma-
trix U = [uq,---,up] is denoted as its corresponding coefficients
(loadings). For each sample, we have x; ~ Wul.T. Clearly, such equa-
tion X~ WUT represents the reconstruction process of sample ma-
trix via using the bases and loadings. Its reverse process can be
done as ul = W~x;.

2.1. Nonnegative Matrix Factorization (NMF)

Compared to the other matrix factorization techniques, Nonneg-
ative Matrix Factorization (NMF) imposes the non-negativity con-
straints W, U>0 to ensure that all entries of W and U are non-
negative. Consequently, NMF only allows non-subtractive combi-
nations. There are two cost functions can be defined to find an
approximate factorization X~ WUT. The first one bases on the Eu-
clidean distance and the second one bases on divergence. In this
paper, we only introduce the Euclidean distance based version and
the divergence based version can be referenced from their original
papers. So, the NMF problem can be finally formulated as a follow-
ing optimization problem:

W:argwilr]lHX—WUTHz, st W.U=0 (1)

The above problem can be solved by using multiplicative updating
rules [26]. Furthermore, an additional constraint ) ;w;; =1 is al-
ways imposed for stabilizing the computation, but this is not nec-
essary.

2.2. Hypergraph

As a generalization of graph, hypergraph is an important tool
for data representation. It depicts the structure of data via measur-
ing the similarity between groups of points [10,38]. The main dif-
ference between hypergraph and graph is that the edge of hyper-
graph can own any number of vertices while the one of graph can
only connect two vertices. The edge of hypergraph is often called
hyperedge. When the length of hyperedge is equal to two, the
hypergraph is exactly equivalent to a common graph. Due to the
aforementioned property of hyperedge, hypergraph enjoys a higher
flexility for depicting the high-order relation. In the real world, the
relations among data should be more complex than the simple
pairwise and naively squeezing such complex relations into pair-
wise ones will inevitably lead to loss of information which can be
expected valuable for learning tasks. Take the article coauthor rela-
tionship as an example, an article is often corresponding to several
authors. And, apparently, a common graph cannot intuitively de-
scribe such one to n high-order relation. Even in GNMF algorithms,
some works also empirically validate this argument. In the experi-
ments of Zeng et al. [36], Hypergraph regularized Nonnegative Ma-
trix Factorization (HNMF) which utilizes hypergraph instead graph
for considering the high-order relations among samples achieve a
better performance in comparison with GNMF [3].

Here, we introduce some basic concepts and notations of hy-
pergraph. Let G(V, E) denote a hypergraph with vertex set V =
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