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a b s t r a c t 

As a commonly used data representation technique, Nonnegative Matrix Factorization (NMF) has received 

extensive attentions in the pattern recognition and machine learning communities over decades, since its 

working mechanism is in accordance with the way how the human brain recognizes objects. Inspired by 

the remarkable successes of manifold learning, more and more researchers attempt to incorporate the 

manifold learning into NMF for finding a compact representation,which uncovers the hidden semantics 

and respects the intrinsic geometric structure simultaneously. Graph regularized Nonnegative Matrix Fac- 

torization (GNMF) is one of the representative approaches in this category. The core of such approach 

is the graph, since a good graph can accurately reveal the relations of samples which benefits the data 

geometric structure depiction. In this paper, we leverage the sparse representation to construct a sparse 

hypergraph for better capturing the manifold structure of data, and then impose the sparse hypergraph 

as a regularization to the NMF framework to present a novel GNMF algorithm called Sparse Hypergraph 

regularized Nonnegative Matrix Factorization (SHNMF). Since the sparse hypergraph inherits the mer- 

its of both the sparse representation and the hypergraph model, SHNMF enjoys more robustness and 

can better exploit the high-order discriminant manifold information for data representation. We apply 

our work to address the image clustering issue for evaluation. The experimental results on five popular 

image databases show the promising performances of the proposed approach in comparison with the 

state-of-the-art NMF algorithms. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nonnegative Matrix Factorization (NMF) is a considerable mul- 

tivariate analysis technique for data analysis [13,16,26] . It learns 

a part-based representation of the data via finding two nonneg- 

ative matrices whose product provides a good approximation to 

the original matrix. In NMF, the nonnegative constraints lead to a 

parts-based representation because they allow only additive, not 

subtractive, combinations. And such way is in accordance with the 

recognition way of the human brain [3,13] . Due to its good psy- 

chological and physiological interpretation, NMF has been in vogue 

for decades and successfully applied to a wide range of domains 

such as computer vision, machine learning and pattern recognition 

[15,17,22,30,33,36] . 
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Recently, many studies indicate that the high-dimensional data 

actually resides on a low-dimensional manifold and such intrin- 

sic geometric structure of data is very useful for discriminating 

data [2,23] . Over decades, extensive classical manifold learning ap- 

proaches have been presented, such as Locally Linear Embedding 

(LLE) [23] , Laplacian Eigenmapping (LE) [2] and Neighborhood Pre- 

serving Embedding(NPE) [8] . Graph learning is a popular technique 

for manifold learning. In graph learning, the manifold learning is- 

sue is considered as a graph cut issue [27] . The core of graph learn- 

ing approaches is graph which encodes the relations of samples. 

During the graph partition, such relations of samples should be 

preserved as more as possible [2,9] . And then the manifold of data 

can be well kept. 

In the last decade, some researchers are aware of the impor- 

tance of manifold information and try to incorporate such desirable 

property into NMF [3,7,29–31,36,37] . Graph regularized Nonnega- 

tive Matrix Factorization (GNMF) should be one of the represen- 

tative approaches in this category [3] . In GNMF, a graph is lever- 
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aged to depict the neighborhood relation of data, and then intro- 

duced to NMF as a graph regularization for considering the local 

geometric structures preservation during the matrix factorization. 

The graph construction is very crucial for GNMF. Since the graph 

used in GNMF is the common graph whose edge only can con- 

nect two vertices, GNMF can only capture the simple pairwise rela- 

tion of data and clearly neglect the high-order relation among the 

samples. To address this issue, Zeng et al. [36] presented the Hy- 

pergraph regularized Nonnegative Matrix Factorization (HNMF) for 

image clustering via using hypergraph instead of graph to depict 

the data structure. The reason why HNMF can address such prob- 

lem is that hypergraph is a generalization of graph and its edge 

can connect any number of vertices [38] . In order to better address 

the hyperspectral unmixing task, Wang et al. [31] introduces a con- 

ventional hypergraph regularization to L 1/2 -NMF for better exploit- 

ing spectral-spatial joint structure of hypespectral image. Gener- 

ally speaking, a graph can only depict one relation (or measure) of 

samples. However, in most of time, it is very hard to pick up a suit- 

able data relation to address different issues. Wang et al. [30] alle- 

viated this problem by presenting Multiple Graph regularized Non- 

negative Matrix Factorization (MultiGrNMF). In MultiGrNMF, mul- 

tiple graphs, which encode different data relations, are combined 

as a combative graph regularization for constraining NMF. These 

graphs are deemed as a series of initial guesses of the optimal 

graph Laplacian. And, finally, the optimal combination of graphs 

can be conditionally learned by ensemble manifold regularization 

technique [6] . The main drawback of MultiGrNMF over other GNMF 

algorithms is that it is very time consuming to construct multiple 

graphs. Moreover, from the perspective of graph embedding [28] , 

many constrained NMF algorithms actually can be formulated as a 

specific GNMF algorithm [14,24,32] . 

In HNMF or GNMF algorithms, a good graph (or hypergraph) 

is an important key towards to the success, since a high-quality 

graph can well reveal the real relations among samples and these 

relations are the crucial cues for data analysis. In GNMF or graph 

learning approaches, the k -nearest neighbor is the most commonly 

adopted method for graph (or hypergraph) construction. However, 

many studies have shown such graph construction fashion is sen- 

sitive to noise and often cannot correctly reflect the real relation of 

samples. Recently, motivated by the advancements of Sparse Rep- 

resentation (SR) [12] , some researchers have attempted to lever- 

age sparse representation for constructing the high quality graph. 

The sparse representation-based graph is often called sparse graph 

or L 1 -graph. Since it inherits the merits of SR which is very dis- 

criminative and robust to noise, the sparse graph works have al- 

ready achieved remarkable success in many domains [4,11] . We be- 

lieve the success of sparse graph can be also applied to HMMF 

and GNMF. So, in this paper, we focus on applying sparse rep- 

resentation to construct a more robust and discriminative hyper- 

graph for constraining NMF. We call such novel NMF algorithm 

Sparse Hypergraph regularized Nonnegative Matrix Factorization 

(SHNMF). Since the sparse representation-based hypergraph inher- 

its the merits from both the hypergraph and the sparse represen- 

tation, SHNMF enjoys more desirable properties and has a much 

better performance over the conventional GNMF and HNMF algo- 

rithms. Moreover, SHNMF is different to the other conventional 

sparse GNMF, such as Hypergraph regularized L 1/2 -NMF [31] or 

Graph regularized L 1/2 -NMF algorithms [18] , which emphasize on 

the sparsity of loading matrix. However, SHNMF emphasizes on 

the sparsity of the hypergraph whose main idea is to leverage the 

sparse representation to construct a high-quality hypergraph for 

regularizing NMF. We adopt five popular image databases to eval- 

uate the data representational power of SHNMF. The experimental 

results demonstrate the superiority of SHNMF in comparison with 

the state-of-the-art NMF algorithms. 

The rest of paper is organized as follows: the background 

knowledge and some basic notations are introduced in Section 2 . 

Section 3 presents the methodology of our work; The experimental 

results are analyzed and discussed in Section 4 ; the conclusion is 

finally summarized in Section 5 . 

2. Preliminaries 

Let us denote a set of n samples as a l × n -dimensional matrix 

X = [ x 1 , · · · , x n ] where x i is the i th sample which is corresponding 

to the i th column of matrix X . In the matrix factorization task, the 

sample matrix can be approximately factorized as X ≈ WU 

T where 

the l × m -dimensional matrix W = [ w 1 , · · · , w m 

] , m ≤ l is denoted 

as the bases (the basis vectors) while the n × m -dimensional ma- 

trix U = [ u 1 , · · · , u n ] is denoted as its corresponding coefficients 

(loadings). For each sample, we have x i ≈ W u T 
i 

. Clearly, such equa- 

tion X ≈ WU 

T represents the reconstruction process of sample ma- 

trix via using the bases and loadings. Its reverse process can be 

done as u T 
i 

= W 

−x i . 

2.1. Nonnegative Matrix Factorization (NMF) 

Compared to the other matrix factorization techniques, Nonneg- 

ative Matrix Factorization (NMF) imposes the non-negativity con- 

straints W, U ≥ 0 to ensure that all entries of W and U are non- 

negative. Consequently, NMF only allows non-subtractive combi- 

nations. There are two cost functions can be defined to find an 

approximate factorization X ≈ WU 

T . The first one bases on the Eu- 

clidean distance and the second one bases on divergence. In this 

paper, we only introduce the Euclidean distance based version and 

the divergence based version can be referenced from their original 

papers. So, the NMF problem can be finally formulated as a follow- 

ing optimization problem: 

ˆ W = arg min 

W,U 
|| X − W U 

T || 2 , s.t W, U ≥ 0 (1) 

The above problem can be solved by using multiplicative updating 

rules [26] . Furthermore, an additional constraint 
∑ 

i w i j = 1 is al- 

ways imposed for stabilizing the computation, but this is not nec- 

essary. 

2.2. Hypergraph 

As a generalization of graph, hypergraph is an important tool 

for data representation. It depicts the structure of data via measur- 

ing the similarity between groups of points [10,38] . The main dif- 

ference between hypergraph and graph is that the edge of hyper- 

graph can own any number of vertices while the one of graph can 

only connect two vertices. The edge of hypergraph is often called 

hyperedge. When the length of hyperedge is equal to two, the 

hypergraph is exactly equivalent to a common graph. Due to the 

aforementioned property of hyperedge, hypergraph enjoys a higher 

flexility for depicting the high-order relation. In the real world, the 

relations among data should be more complex than the simple 

pairwise and naively squeezing such complex relations into pair- 

wise ones will inevitably lead to loss of information which can be 

expected valuable for learning tasks. Take the article coauthor rela- 

tionship as an example, an article is often corresponding to several 

authors. And, apparently, a common graph cannot intuitively de- 

scribe such one to n high-order relation. Even in GNMF algorithms, 

some works also empirically validate this argument. In the experi- 

ments of Zeng et al. [36] , Hypergraph regularized Nonnegative Ma- 

trix Factorization (HNMF) which utilizes hypergraph instead graph 

for considering the high-order relations among samples achieve a 

better performance in comparison with GNMF [3] . 

Here, we introduce some basic concepts and notations of hy- 

pergraph. Let G ( V, E ) denote a hypergraph with vertex set V = 
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