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a b s t r a c t 

Histograms have extensively been used as a simple tool for nonparametric probability density function 

estimation. However, practically, the accuracy of some histogram-based derived quantities, such as the 

marginal entropy (ME), the joint entropy (JE), or the mutual information (MI) depends on the number 

of bins chosen for the histogram. In this paper, we investigate the binning problem of bi-histogram for 

the estimation of JE. By minimizing a theoretical mean square error (MSE) of JE estimation, we derive 

a new formula for the optimal number of bins of bi-histogram for continuous random variables. This 

novel JE estimation has been used in the MI estimation to avoid the error accumulation of joint MI 

between the class variable and feature subset in the feature selection. In a synthetic Gaussian feature 

selection problem, only the proposed method permits to retrieve the exact number of relevant features 

that explain the class variable when compared to a concurrent univariate estimator based on binning 

formula that has been proposed for ME estimation. In speech and speaker recognition applications, the 

proposed method permits to select a limited number of features which guaranties approximately the 

same or an even better recognition rate than using the total number of features. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The entropy is a well-known measure of uncertainty informa- 

tion contained in one random variable X. When two variables X 

and Y are considered, the joint entropy (JE) represents uncertainty 

of the joint variables. Many factors may affect the JE among them 

the dependency between both variables. The higher the depen- 

dency between joint variables, the lower the uncertainty will be 

and, thus, the lower the entropy will be. When the variables are 

independent, uncertainty will be the highest, producing the high- 

est entropy. This is the reason why JE is included in the defini- 

tion of many information measure tools such as the dependency, 

distance or similarity when evaluated between two variables. In 

[1] and [2] , several (dis)similarity measures for image registra- 

tion are described as JE, mutual information (MI), normalized mu- 

tual information, symmetric uncertainty coefficient and exclusive 

f-information. All these measures need to compute the marginal 

entropy (ME) and JE between two discrete valued random vari- 

ables. The JE has been used in pattern recognition [3] as dissimilar- 

ity measure for images registration [4] . The authors in [5] used MI 

to initialize the weights in sigmoidal feedforward neural networks. 
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The MI between input and output variables of the neural networks 

were computed thanks to JE measures for evaluating useful infor- 

mation contained in the input variables. In all these studies using 

JE measures, the estimation step is essential and has to be carefully 

achieved. This is particularly true when the variables are continu- 

ous because the computation of JE from the data requires the in- 

tegration of the joint probability density function (pdf) which is a 

very difficult task. Some methods introduce functions for the den- 

sity estimation, such as Parzen windows [6] or Gaussian mixture 

models [7] . However, these methods involve an appropriate tun- 

ing of many parameter values in the selected function, which is an 

important issue in the estimation quality. Other common methods 

divide the continuous data space into several discrete partitions in 

order to perform discrete histogram estimation. Thus, the JE can 

be calculated using the definitions for discrete cases. Nevertheless, 

the estimation performance can be degraded as a result of large 

errors that are transmitted to the JE estimation due to the parti- 

tioning and pdf estimation procedures, when the number of data 

is limited. 

The most attractive histogram partitioning is the adaptive one 

[8] but the computation cost dramatically increases with the num- 

ber of data. So we focus in this study on the uniform partitioning 

because of its computational efficiency [9] which only necessitates 
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one parameter to tune for histogram estimation (or two parame- 

ters for bi-dimensional histogram estimation). 

In the case of a uniform bin partitioning, the number of bins 

k , or equivalently the bin width �, has to be defined for each 

variable. We proposed in [9] a new binning formula for the ME 

histogram-based estimation. This formula has been used in [5] and 

[10] to estimate respectively the ME and JE for MI computation. 

However, a direct application of this binning formula to the JE case 

is fundamentally not correct. We thus propose in this paper the bi- 

histogram binning derivation for the JE case which has to take into 

account the correlation between the two variables. The computa- 

tion proposed in [5] will be used as a reference case (univariate) 

for a comparison with the new proposed appropriate JE estimation 

case development (bivariate). 

This paper is organized as follows. Section 2 is divided into two 

parts. First, a general background about histogram-based estima- 

tion of JE is proposed. Second, the procedure for the optimal num- 

ber of bins which produces a minimum mean square error of the 

histogram-based JE estimation is derived. Section 3 presents simu- 

lations that validate and show the superiority of the proposed ap- 

proach. First, an experimental performance study of the new esti- 

mator is detailed. Second, the method is approved in a simulated 

feature selection problem. Section 4 gives the experimental results 

of the method for a speaker and phoneme recognition task using 

the logatome OLLO database [11] . Section 5 concludes the paper. 

2. Method 

This part is devoted to the JE definitions in the continuous and 

discrete cases followed by the procedure proposed to derive the 

appropriate number of bins. This number is obtained by following 

the same mean square error (MSE) minimization procedure as de- 

scribed in [12] . 

2.1. General background 

Let us first recall that the entropy of a continuous random vari- 

able X , with pdf f X ( x ), is defined as [13] : 

H(X ) = −
∫ + ∞ 

−∞ 

f X (x ) log f X (x ) dx (1) 

In this paper, we consider the nat measure of the entropy ex- 

pressed with the natural logarithm. When two continuous random 

variables X and Y are considered at the same time, the entropy is 

a JE, with a joint pdf f XY ( x, y ), and the definition becomes [13] : 

H(X, Y ) = −
∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

f X,Y (x, y ) log f X,Y (x, y ) d x d y (2) 

Both definitions are useful for introducing the MI that quan- 

tifies the common information which is shared between the two 

variables X and Y . A common definition of MI writes [13] : 

MI (X ;Y ) = H(X ) + H(Y ) − H(X, Y ) (3) 

This formula can be rewritten as: 

MI (X ;Y ) = 

∫ + ∞ 

−∞ 

∫ + ∞ 

−∞ 

f X,Y (x, y ) log 

(
f X,Y (x, y ) 

f X (x ) f Y (y ) 

)
d x d y (4) 

We now focus on the discretization of Eq. (2) . For a histogram- 

based JE estimation, the x -axis is divided into k X equally sized 

�X segments with position i and the y -axis is divided into k Y 
equally sized segments with position j . The discrete approximation 

of (2) writes: 

H(X, Y ) ≈ −
k X ∑ 

i =1 

k Y ∑ 

j=1 

f X,Y ( x i , y j ) log f X,Y ( x i , y j ) �X �Y (5) 

If we now consider the probability p ij of observing a sam- 

ple within an area of size ( �X ×�Y ) located around the posi- 

tion ( i, j ) in the discretization grid, an approximation of p ij writes 

p ij ≈ f X, Y ( x i , x j ) �X �Y . An estimation of this probability is classically 

obtained as ˆ p i j = 

k i j 

N by counting the number of samples k ij effec- 

tively falling into this area divided by the total number of samples 

N . So Eq. (5) results in the estimator of H( X, Y ) as: 

ˆ H (X, Y ) = −
k X ∑ 

i =1 

k Y ∑ 

j=1 

(
k i j 

N 

)
log 

(
k i j 

N 

)
+ log ( �X �Y ) (6) 

2.2. Minimum MSE histogram-based JE estimator 

In the case of arbitrary mean Gaussian distributed variables X 

and Y , with standard deviation σ X and σ Y respectively, and cor- 

relation ρ , the bias of the histogram-based JE estimation approxi- 

mately writes [14] : 

Bias 
{

ˆ H (X, Y ) 
}

≈ 1 

24 

(
1 − ρ2 

)
( (

�X 

σX 

)2 

+ 

(
�Y 

σY 

)2 
) 

−
(

k X . k Y − 1 

2 .N 

)
(7) 

The variance of the estimator approximately writes [14] : 

var 
{

ˆ H (X, Y ) 
}

≈ 1 

N 

(8) 

The MSE of ˆ H (X, Y ) estimated by Eq. (6) can therefore be ex- 

pressed as: 

MSE 

{
ˆ H (X, Y ) 

}
≈ 1 

N 

+ 

{ 

1 

24 

(
1 − ρ2 

)
( (

�X 

σX 

)2 

+ 

(
�Y 

σY 

)2 
) 

−
(

k X . k Y − 1 

2 .N 

)}2 

(9) 

The purpose now is to search for the number of bins k X and 

k Y that minimize Eq. (9) . In practice, the variables X and Y are of 

limited extension A x and A y that can be measured as 

A x = max (x ) − min (x ) and A y = max (y ) − min (y ) , where the 

max (.) and min (.) operators return the maximum and minimum 

values of the available observed data for the variables X and Y , re- 

spectively. A uniform partitioning implies that: 

k X �X = A x and k Y �Y = A y (10) 

Another way to measure the extent of a random variable makes 

use of the standard deviation as: 

αX σX = A x and αY σY = A y (11) 

where αX and αY are unknown constant values depending on 

the distribution (typically αX = 6 when considering the Gaus- 

sian distribution which is assumed in the previous derivations). 

Eqs. (10) and (11) produce the following equalities: 

�X 

σX 

= 

αX 

k X 
and 

�Y 

σY 

= 

αY 

k Y 
(12) 

By noting that the number of bins for Y is k Y = β k X , the issue 

is now to find the optimal number k opt = k X = k Y /β that can be 

obtained by solving the minimization equation: 

k opt = arg min 

k 

[
MSE 

{
ˆ H (X, Y ) 

}]
. (13) 

Since the variance of ˆ H (X, Y ) is independent of k , Eq. (13) can 

be reduced to: 

k opt = arg min 

k 

[ 
Bias 

{
ˆ H (X, Y ) 

}2 
] 
. (14) 
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