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a b s t r a c t 

We consider multi-class classification models built from complete sets of pairwise binary classifiers. The 

Bradley–Terry model is often used to estimate posterior distributions in this setting. We introduce the 

notion of Bayes covariance, which holds if the multi-class classifier respects multiplicative group action 

on class priors. As a consequence, a Bayes covariant method yields the same result whether new priors 

are considered before or after combination of the individual classifiers, which has several practical ad- 

vantages for systems with feedback. In the paper, we construct a Bayes covariant combining method and 

compare it with previously published methods in both Monte Carlo simulations as well as on a practical 

speech frame recognition task. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Statistical and machine-learning classification methods have 

found widespread applications in industry, as well as in scientific 

research. Successful applications include optical character recog- 

nition [1] , speech recognition systems [2] , automated medical di- 

agnoses [3] and credit-risk scoring [4] . Although in some practi- 

cal applications binary decisions may be sufficient (e.g. cancer/no 

cancer decision), most applications require correct classification 

among multiple classes. 

Broadly speaking, multi-class classification will pose a more 

challenging problem than binary classification. One reason for this 

is that the set of boundaries among multiple classes may be more 

complex and thus may be harder to learn than the boundary be- 

tween two classes. Another reason is that several powerful ma- 

chine learning methods for classification of two classes have no 

direct analogues for multiple classes, making these methods inap- 

plicable for those faced with a multi-class problem. Important ex- 

amples of such methods include support vector machines [5,6] and 

Adaboost [7] . 

There are many ways to reduce the multi-class classification of 

K classes to binary classification subproblems. One common ap- 

proach is one-vs-all classification when one trains K classifiers to 

distinguish each class from all of the rest [8] . Another common 
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approach is all-vs-all when one trains 
(

K 
2 

)
pairwise classifiers [9] . 

Other approaches have been proposed based on error correcting 

coding theory [10–14] and on training statistical meta-classifiers 

[15] . 

In our work, we consider the question of combining the out- 

put of binary classifiers in an all-vs-all setting. Some reasons to 

consider this approach rather than the one-vs-all approach [8] in- 

clude: 

• larger number of parameters allow for more powerful models, 
• simpler and faster training of individual classifiers compared to 

one-vs-all ( [8, pp. 123–124] ), 
• when samples are densely packed in Euclidean space, the all- 

vs-all boundaries should be simpler, and thus easier to learn 

than one-vs-all boundaries; for example English vowels lie es- 

sentially in a 2-dimensional space [16] , 
• larger number of binary models allows for some tolerance of 

imprecision of individual classifiers ( [17] , [8, p. 102] , [18] ). Im- 

precise computation is typical for neuromorphic circuits for 

classification problems, which on the other hand are highly par- 

allel and highly energy efficient [19,20] . 

Bayes theorem provides a rigorous foundation of classification. 

The theorem explains the crucial role played by class priors on 

the outcome of classification (cf. (2) ). Usually, class priors are a 

fixed quantity during classification. However, in multi-tiered sys- 

tems with feedback, one may desire to reevaluate evidence with 

different priors based on feedback from other tiers. For instance, 

a typical automated speech recognition system consists of three 

parts – an acoustic model, a lexicon and a language model [21] . 
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At first, one may classify a word-initial sound based on the prior 

for word-initial sounds from the acoustic model. As subsequent 

phonemes are recognized, the system may narrow down the list 

of possible words based on lexical and language constraints, yield- 

ing a different prior on the word-initial sound. Final classification 

of the word initial phoneme could then be derived from this latter 

prior. 

The effect of varying class priors on posterior probabilities is 

predicted by Bayes theorem. In all-vs-all classification, this effect 

can be applied in two ways: either before, or after combining the 

results of individual pairwise classifiers. We propose to investigate 

Bayes covariant methods, which we define as those for which ei- 

ther combining method yields the same result. 

2. The Bradley–Terry model 

Consider the situation when each of a set of pairwise binary 

classifiers produces not only a 0 − 1 decision, but actually esti- 

mates the two class conditional probability. Namely, each pairwise 

classifier trained to decide between classes C i and C j also esti- 

mates the posterior probability of belonging to a particular class, 

r i j = p(C i | x , C i ∨ C j ) given a vector of observed features x . This ad- 

ditional information should allow the multi-class model to produce 

more accurate classification. Moreover, and independently of the 

potential for greater classification accuracy, in some applications it 

may be desirable to obtain an estimate of the posterior distribution 

p ( C i | x ). For example, there are many uses for posterior informa- 

tion, e.g. for loss minimization decisions, for subsequent process- 

ing by a temporal model like HMM, for explanation of perception 

experiments [22–24] . 

We will now describe the Bradley–Terry model [25] which 

is commonly used to combine the output of pairwise classifiers 

[17,18] . By Bayes theorem we know that the output of the classifier 

comparing C i and C j is: 

r i j = 

p(x | C i ) p(C i ) 

p(x , C i ∨ C j ) 
= 

p(x | C i ) p(C i ) 

p(x | C i ) p(C i ) + p(x | C j ) p(C j ) 
, (1) 

and for the desired multi-class posterior one has: 

p(C i | x ) = 

p(x | C i ) p(C i ) ∑ 

j p(x | C j ) p(C j ) 
. (2) 

Setting p i = p(x | C i ) p(C i ) we arrive at the Bradley–Terry system of 

equations: 

r i j = 

p i 
p i + p j 

, (3) 

whose solution gives the desired posterior distribution: 

p(C i | x ) = 

p i ∑ 

j p j 
. (4) 

We will assume that r i j + r ji = 1 and moreover that r ij > 0 for 

i � = j. The equality is a very natural requirement on the binary clas- 

sifiers. The requirement that r ij is positive may simply be achieved 

by removing from consideration all categories C i for which there is 

j � = i such that r i j = 0 . We shall call matrices R = (r i j ) that satisfy 

these requirements feasible . Our goal is then to construct estimates 

ˆ p i of p i based on a feasible matrix R . We will refer to algorithms 

yielding such estimates as combining methods . We are interested 

in algorithms that do not involve training in contrast to statistical 

combining methods [15] . 

3. Bayes covariant combining methods 

As outlined in the previous section, the Bradley–Terry model 

explicitly depends on priors πi = p(C i ) . Consider what happens to 

r ij if the prior changes to π ′ 
i 

= q i πi . On the one hand from (3) we 

have: 

1 

r i j 

− 1 = 

p j 

p i 
= 

p(x | C j ) p(C j ) 

p(x | C i ) p(C i ) 
, (5) 

so that binary posteriors R = (r i j ) should transform to R 

′ = (r ′ 
i j 
) 

satisfying: 

1 

r ′ 
i j 

− 1 = 

q j 

q i 

(
1 

r i j 

− 1 

)
. (6) 

When the dependence on q is important we will indicate it by 

right upper exponent R 

′ = R 

q . 

On the other hand, we may examine the effect of altering the 

prior probabilities on estimated solutions ˆ p i produced by a com- 

bining method M which takes as input the matrix R = (r i j ) . Writ- 

ing: 

ˆ p i = M(R ) (7) 

ˆ p ′ i = M(R 

′ ) (8) 

we may expect from (2) that: 

( ̂  p ′ 1 , ˆ p ′ 2 , . . . ) ∝ (q 1 ̂  p 1 , q 2 ̂  p 2 , . . . ) . (9) 

If this relationship holds for any feasible matrix R and any posi- 

tive reweighing vector q = (q 1 , . . . , q K ) we say that the combining 

method M is Bayes covariant . In the next sections, we will construc- 

tively prove the existence of Bayes covariant combining methods. 

4. A Bayes covariant combining method for three categories 

In this section, we restrict ourselves to three-category problems 

(K = 3) . Let us start by introducing the 3-symmetry condition. Con- 

sider the situation when binary classifiers report a feasible matrix 

satisfying 

r 12 = r 23 = r 31 . (10) 

By our assumption also r 21 = r 32 = r 13 = 1 − r 12 . These data are 

completely symmetrical and thus it is natural to expect that a 

combining method M gives preference to no category. Formally, a 

combining method M satisfies 3-symmetry if and only if: 

M 

⎛ 

⎝ 

· t 1 − t 

1 − t · t 

t 1 − t ·

⎞ 

⎠ = 

(
1 

3 

, 
1 

3 

, 
1 

3 

)
for any t ∈ (0 , 1) . 

(11) 

Theorem 1. There exists a unique Bayes covariant combining method 

for K = 3 that has 3-symmetry. 

Proof. Let M be a Bayes covariant combining method with 

3-symmetry. We will show that for any feasible matrix R there ex- 

ists q > 0 such that R 

q = (r ′ 
i j 
) has entries satisfying (10) . If we set 

q = (1 , A, B ) then from (6) we have for R 

q = (r ′ 
i j 
) : 

A 

(
1 

r 12 

− 1 

)
= 

1 

r ′ 
12 

− 1 (12) 

1 

B 

(
1 

r 31 

− 1 

)
= 

1 

r ′ 
31 

− 1 (13) 

B 

A 

(
1 

r 23 

− 1 

)
= 

1 

r ′ 
23 

− 1 (14) 
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