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a b s t r a c t 

Skeletonization provides an effective and compact representation of objects, which is useful for object descrip- 

tion, retrieval, manipulation, matching, registration, tracking, recognition, and compression. It also facilitates 

efficient assessment of local object properties, e.g., scale, orientation, topology, etc. Several computational 

approaches are available in literature toward extracting the skeleton of an object, some of which are widely 

different in terms of their principles. In this paper, we present a comprehensive and concise survey of 

different skeletonization algorithms and discuss their principles, challenges, and benefits. Topology preser- 

vation, parallelization, and multi-scale skeletonization approaches are discussed. Finally, various applications 

of skeletonization are reviewed and the fundamental challenges of assessing the performance of different 

skeletonization algorithms are discussed. 

© 2015 Published by Elsevier B.V. 

1. Introduction 

Skeletonization provides an effective and compact representation 

of an image object by reducing its dimensionality to a “medial axis” or 

“skeleton” while preserving the topologic and geometric properties 

of the object. In two dimensions (2-D), an object is reduced to a curve 

skeleton consisting of one-dimensional (1-D) structures. In three di- 

mensions (3-D), an object may be converted to a surface skeleton, i.e., 

a union of 1-D and 2-D structures, or, it may be reduced to a curve 

skeleton consisting of only 1-D structures. Blum [24] established the 

foundation of skeletonization in the form of medial loci of an object 

in R n that forms the skeleton of the object. This skeleton consists 

of planes/axes of symmetry with lower dimensionality. The skele- 

ton is useful for object description, retrieval, manipulation, matching, 

registration, tracking, recognition, compression, and it also facilitates 

efficient assessment of local object properties, e.g., scale, orientation, 

topology etc. Analytically, Blum’s skeleton, or medial axis, is defined 

using a grassfire transform process [25] where the object is assumed 

to be a field of dry grass and a fire is simultaneously lit at all boundary 

points. The fire propagates inside the object at a uniform velocity. 
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The skeleton is the set of quench points, where two independent 

fire-fronts meet [64,84,85,96,165,173,175] . 

Blum’s grassfire transform was later generalized and adopted by 

the image processing, computer vision, and graphics community 

in the form of the medial axis, or skeleton, of objects. Commonly, 

when the continuous approach is taken, the boundary of the object 

is approximated by a polygon or a curve, the grassfire propagation 

process is realized by curve evolution or constrained mathematical 

morphological erosion and the skeleton is formed at quench points 

where the curve evolution process is interrupted [84,85,96,173] . Sev- 

eral researchers have sought geometric features, e.g., the Voronoi di- 

agram, to identify symmetry structures in an object [36,125,128,129] . 

Digital approaches can simulate the grassfire propagation using an it- 

erative constrained erosion process [92,95,126,135,158,190] . Another 

group of digital skeletonization algorithms [4,7,23,33,145,165] locate 

maximal balls [165] on digital distance transform field [27] . 

Blum inspired the representation of an object by the loci of the cen- 

ters of its maximal inscribed balls (MIBs), together with their radii, 

which allows exact reconstruction of the object from its medial loci. 

Computationally, a skeleton may be perceived in three ways: the 

Blum’s quench points by opposing fire-fronts, the centers of MIBs, 

or the centers of the enclosed balls that touch the object bound- 

ary at two or more disjoint locations. For objects in R 2 or R 3 , these 

three skeletonization approaches are roughly equivalent. However, 

the same is not true for a digital object and these three definitions 

may produce different skeletons [175] . The inherent discrete na- 

ture of digital objects further complicates the skeletonization task by 
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posing major hurdles, e.g., high sensitivity to small details on the 

object boundary, homotopy, non-standard definitions of digital balls, 

etc. Note that high sensitivity to small details on the object boundaries 

is also featured by non-discrete or continuous approaches to skele- 

tonization [10,118] . In most applications, it is desired that the com- 

puted skeleton of a digital object is robust under different conditions 

of digitization and imaging artifacts; consist of one-voxel thin curves 

and surfaces to enable tracking; and allow acceptable reconstruction 

of the original object. This makes the evaluation of the performance 

of digital skeletonization algorithms challenging [176,177] . Note that 

taking the continuous route does not remove these problems–the 

digital object in an image then has to be converted to continuous data 

and the resulting skeleton may have to be digitized. Neither is trivial. 

As discussed above, several computational approaches have been 

reported in literature toward extracting the skeleton of an object, 

some of which are widely different in terms of their principles. Sev- 

eral researchers have used continuous methods while others have 

used purely digital approaches to compute the skeleton of an object. 

Discussion on different principles of skeletonization algorithms has 

been reported [175] . In this paper, we present a concise survey of dif- 

ferent skeletonization approaches and algorithms and discuss their 

principles, challenges, and advantages. Also, topology preservation, 

parallelization, and multi-scale skeletonization approaches are dis- 

cussed. Finally, various applications of skeletonization are reviewed 

and the fundamental challenges of assessing the performance of dif- 

ferent skeletonization algorithms are discussed. 

2. Different approaches of skeletonization 

Skeletonization algorithms may be grouped into three major cat- 

egories based on their principles and the underlying object represen- 

tation: 

(1) Algorithms based on Voronoi diagram or continuous geomet- 

ric approaches of point clouds, polygonal, or polyhedral repre- 

sentations of object boundaries. Such algorithms use Voronoi 

edges or planes to construct the symmetry structures or the 

skeleton. 

(2) Algorithms based on the principle of continuous evolution of 

object boundary-curves where the skeleton is formed at the 

locations of singularities, e.g., at collision points of opposing 

boundaries. 

(3) Algorithms based on the principle of digital morphological ero- 

sion or location of singularities on a digital distance transform 

(DT) field, e.g., maximal included balls. 

Besides the above three categories, Pizer and coworkers 

[59,122,139] presented algorithms to extract zoom-invariant cores 

from intensity images. The medial cores are defined as generalized 

maxima in scale-space produced by a medial filter that is invariant 

to translation, rotation, and, in particular, zoom. Lantuejoul [94] in- 

troduced a mathematical morphological approach for skeletonization 

using influence zones. Maragos and Schafer [116] used mathematical 

morphological set operations to transform a discrete binary image 

using parts of its skeleton containing complete information about its 

shape and size. See [117,118,170] for early works on mathematical 

morphological approaches to homotopic thinning in continuous and 

discrete spaces. Skeletal subsets produced by such methods are de- 

pendent on structure elements used for mathematical morphology 

operations. Also, the resulting skeletons may not preserve connect- 

edness. 

It may be noted that most digital approaches to skeletonization 

use the object representations in pixel (in 2-D) or voxel (in 3-D) grids. 

A major drawback with such skeletonization algorithms is that these 

methods may not guarantee single-pixel (or voxel) thin skeletons for 

all objects, especially, at busy junctions; see Fig. 1 . In other words, if 

Fig. 1. An example of a busy junction of digital lines forming a diamond-shaped region 

in 2-D, which may not be thinned any further as the removal of any pixel from the 

object alters its topology. Note that it is possible to generalize a similar example in 3-D 

where the junction forms a volume that cannot be thinned. 

the object of Fig. 1 or its 3-D version is used as an input, pixel- or voxel- 

based methods may not remove any pixel or voxel and thus fails to 

produce a one-pixel thin skeleton. Note that the example of Fig. 1 may 

be modified to increase the size of the central blobby region. A more 

complex, but also richer, approach to the object representation is 

using simplicial or cubical complex frameworks [40,47,50,54,88,98] . 

The above problem disappears when skeletonizing objects in these 

frameworks [50,54,98] . In the rest of this section, a brief survey of 

skeletonization algorithms for each of the above three categories is 

presented. 

2.1. Continuous geometric approaches 

Several algorithms [36,128,129] focus on geometric properties of 

Blum’s medial symmetry axis to locate the skeleton of an object. These 

methods are generally applied on a mesh representation of the ob- 

ject, or on a point-cloud generated by sampling the object boundary. 

One popular approach under this category is based on the principle 

of the Voronoi diagram [3,36,125,128,129,185] . The Voronoi skele- 

ton of a polygonal shape is obtained by computing the Voronoi di- 

agram of its boundary vertices and then taking its intersection with 

the polygonal shape. It may be noted that each additional vertex on 

the polygon adds a new skeletal branch. Thus, a proper polygonal ap- 

proximation of a shape is crucial to generate the desired complexity 

of the skeleton. On the other hand, an accurate polygonal representa- 

tion of a shape requires a large number of vertices. Thus, in general, 

Voronoi skeletonization produces a large number of spurious skele- 

tal branches that are not essential for overall representation of the 

shape. Ogniewicz and Ilg [128] observed that the skeletal segments, 

which lie deeply inside the polygonal shape are less sensitive to small 

changes on the boundary . Such segments are essential for the descrip- 

tion of the global topology and geometry of an object. Based on this 

observation, they derived different residual function s and used those 

to differentiate spurious branches from those essential to represent 

the object topology and geometry. Schmitt [167] proved that, as the 

number of generating boundary points increases, the Voronoi dia- 

gram converges in the limit to the continuous medial locus , with the 

exception of the edges generated by neighboring pairs of boundary 

points. Later, Voronoi skeletonization was generalized for 3-D poly- 

hedral solids [3,11,52,172] . Amenta et al. [3] characterized inner and 

outer Voronoi ball s for a set of boundary sample points to reconstruct 

its power crust, an approximation of a polyhedral boundary, and to 

compute its Voronoi skeleton. Jalba et al. [80] developed a GPU-based 

efficient framework for extracting surface and curve skeletons from 

large meshes. Bucksch and Lindenbergh [38] presented a graph-based 

approach to extract the skeletal tree from point clouds using collaps- 

ing and merging procedures in octree-graphs. This approach offers a 

computationally efficient solution for computing skeletons from point 

clouds that is robust to varying point density and the complexity of 

the skeleton may be adjusted by varying the size of the octree cell. 
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